r
r
B
N
C | |
N
. .
N B
r
- B
| H
s B
Prime. Advanced

Programmer’s
Guide II:
File System

r Revision 23.0

- DOC10056-3LA

3

Advanced Programmer’s
Guide Il: File System

Third Edition

William T. Carbonneau

This manual documents the software operation of the PRIMOS operating
r system on 50 Series computers and their supporting systems and

utilities as implemented at Master Disk Revision Level 23.0

(Rev. 23.0).

Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

)

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.

PRIME, PR1ME, PRIMOS, and the Prime logo are registered trademarks of

Prime Computer, Inc. 50 Series, 400, 750, 850, 2250, 2350, 2450, 2455, 2550, 2655,
2755, 2850, 2950, 4050, 4150, 4450, 6150, 6350, 6450, 6550, 6650, 9650, 9655, 9750,
9755, 9950, 9955, 995511, Prime INFORMATION CONNECTION, DISCOVER,
INFO/BASIC, MIDAS, MIDASPLUS, PERFORM, PERFORMER, PRIFORMA,
Prime INFORMATION, PRIME/SNA, INFORM, PRISAM, PRIMAN, PRIMELINK,
PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER, PRIME TIMER,
RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT45, PT65, PT200, PT250,
and PST 100 are trademarks of Prime Computer, Inc.

Printing History

Preliminary Edition (DOC9229-1LA) January 1985 for Revision 19.4
First Edition (DOC10056-1LA) September 1985 for Revision 19.4.2
Second Edition (DOC10056-2L.A) July 1987 for Revision 21.0

Third Edition (DOC10056-3LA) June 1990 for Revision 23.0

Credits

Editorial: Thelma Henner, Mary Skousgaard
Project Development: Glenn Morrow

Technical Support: Julie Cyphers, Sonya Zegarra
Hlustration: Mary Easter, Carol Smith, Myron Stein
Production: Judy Gordon

J J

7))

How to Order Technical Documents

To order copies of documents, or to obtain a catalog and price list:

United States Customers International
Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.

Monday through Thursday,
8:30 a.m. to 8:00 p.m. and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

PRIME SERVICE**

Prime provides the following toll-free number for customers in the United States needing

service:

1-800-800-PRIME

For other locations, contact your Prime representative.

Surveys and Correspondence

Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.

500 Old Connecticut Path
Framingham, MA 01701

iif

Reading Path for PRIMOS Documentation

Book Level
PRIMOS introduction
Guide for All Users
\ 4
SPLr' gRIMOSds
man
GZ?d: < Rg{grence Reference
Guide for All Users
y ¢
Y
Subroutines Language
vl | Relerance Reference for
“ Programmers
y
L >
B \ 4
fourfs Eg? Dand (P-}' > ra{nmer's p
eve ulde to rogrammer
Deb Ref BIND and
Gseree Gude EPFs Tools
Guide
4
\ 4 Y \ 4 _ _
Advanced Advanced Advanced Advanced
Programmer's Programmer's Programmer's Programmer’s
Guide I Guide llI: Guide I Guide:
BING and Command Flle System Appendices
EPFs Environment and Master
Index
4
Advanced
4 Programmer
| | | Information
System Instruction Assembly
Architecture Sets Guide Language
Reference Programmer's
ide Guide
Qpath D10056 3LA

iv

) J

J

Y

Contents

About This Book

r 1 what Is a File System?

Data...1-1

Storage ... 1-2

Objects ... 1-2

Procedures . .. 1-3

File Systems: Summary . ..1-3

r 2 The PRIMOS File System

What Is the PRIMOS File System? . . . 2-1

The File System Before Rev. 23.0...2-2
Disk Trees on More Than One System . . . 2-3
Limitations of Multi-rooted Name Space . . . 2—4
The Rev. 23.0 File System . . .24
The Root Directory . .. 2-5

The Singly-Rooted File System Directory Structure . .

r The Common File System Name Space . . . 2-7
The Name Server .. .2-7
The Global Mount Table . . . 2-7
Logical Mounts . . . 2-8
Portals . ..2-8

PRIMOS File System Objects . . . 2-9
Naming and Accessing Objects . . . 2-10
Root Directories . . . 2-10
Physical Disks . .. 2-13
Disk Partitions . . . 2-14
Directories . . . 2-15
Segment Directories . . . 2-15
Access Categories . . . 2-16
Files...2-16

)

.2-5

3 Accessing the PRIMOS File System

Object-naming Conventions . , . 3-1
Objectnames. . . 3-2
Pathnames . ..3-2
How and When Objects Are Named .. . 3-5
Access Methods . . . 3-5

Access Control . . . 3-6
Attaching to a File Directory . . .3-6
Access Control Lists . . . 3-7
Password Directory . . . 3-8

How and When Access Is Calculated . . . 3-9
Access Calculation Concepts . . . 3-9
Access Calculation When Opening Files . . . 3-11
Access Calculation When Attaching to Directories . . . 3-11
Access Calculation for Other Operations . . . 3-12

File Units ... 3-13

Information Associated With a File Unit. . . 3-13
Opening aFile ... 3-16

File Unit Number Allocation . . . 3-17

File Unit Numbers . .. 3-18

File Pointers . . . 3-18

Positioning Files...3-19

Truncating Files...3-19

Closing Files 3-19
Closing on Normal Program Termination . .. 3-19
Closing on Abnormal Program Termination . . . 3-20

File Attributes . .. 3-20
The Date and Time Last Accessed (DTA) Attribute . . . 3-21
The Date and Time Created (DTC) Attribute . . . 3-22
The Date and Time Last Modified (DTM) Attribute . . . 3-23
The Date and Time Last Backed Up (DTB) Attribute . . . 3-24
The Read/Write Lock Attribute . . . 3-24
The File Type Attribute . . . 3-25
The Dumped/Not-dumped Attribute . . . 3-26
The Special/Not-special Attribute . . . 3-27

Quotas.. . . 3-27

4 Programmer Interfaces to the File System

Communicating With the File System . . . 4-1
Commands . . . 4-1
Command Functions . . . 4-2
Subroutine Calls . . . 4-2
System Primitives . .. 4-2
Arguments and Options . . . 4-3

J J

J

Y)

Attach Points and Access Rights . . . 44
Objectnames . . . 4-6

File Units and Attributes . . . 47

PRIMOS Responses (Return Codes) . . . 4-8

File System Operations: An Overview . ..4-9
General Requirements . . . 4-9
Creating Objects . . . 4-10
Opening Objects . . . 4-10
Reading Objects . .. 4-10
Writing Objects . . . 4-11
Deleting Objects . . . 4-11

Access Control to File System Objects . . . 4—12
Attach/ACL Requirements . . . 4-12
Attaching . . .4-12
Access Control List (ACL) Functions . . . 4-15

Creating File System Objects . .. 4-22
Creating Portals . . . 4-22
Creating File Directories . . . 4-24
Creating Files . . . 4-26

OPENING FILE SYSTEM OBJECTS...4-27
Opening File Directories . . . 4-27
Opening Files . . . 4-29

Reading File System Objects . . . 4-30
Writing File System Objects . . . 4-35
Closing File System Objects . . . 4-37
Deleting File System Objects . . . 4-38

5 search Rules

Search Rules and Search Lists . . . 5-1
Default Search Lists .. . 5-2

Advantages of Search Rules . . . 5-2

Search Rule Types . . . 5-3
Administrator and System Search Rules . . . 5-3
User—specified Rules . . . 5-4

Search List Types 54
User—defined Lists . . . 5-4
ATTACHS ...5-5
COMMANDS. . .5-7
INCLUDES... 5-8
BINARYS...5-8
ENTRYS...5-9

Creating and Setting Search Rules . . . 5-9

Creating a Search Rules File . . . 5-9
Setting Search Lists . .. 5-10

vii

viii

Search Rule Keywords . . . 5-12
The —insert Keyword . . . 5-12
The —system Keyword . . . 5-13
The —optional Keyword . . . 5-15
The -added_disks Keyword . . . 5-15
The —public Keyword . . . 5-17
The —static_mode_libraries Keyword . . . 5-17
The -primos_direct_entries Keyword . . . 5-17
The [origin_dir] Keyword . . . 5-18
The {home_dir] Keyword . .. 5-18
The [referencing_dir] Keyword . . . 5-19

Accessing Search Lists . . . 5-19
PRIMOS Command Environment . . . 5-19
CPL Programs . . . 5-20
Program Subroutines . . . 5-20
ATTACHS Invoked by Other Search Lists . . . 5-21

6 Attach Points

The Initial Attach Point . .. 6-1
The Home Attach Point . . . 6-3

The Current Attach Point . . . 64
Operations That Reset the Current Attach Point . . . 6-5

Functions Used To Manipulate Attach Points . . . 6-7

The AT$ Subroutine . .. 6-7

The AT$ABS Subroutine . . . 6-10

The ATSANY Subroutine . . . 6-13

The AT$REL Subroutine . . . 6~16

The AT$ROOT Subroutine . . . 6-19

The GPATHS$ Subroutine . . . 6-20

The SRCH$$ Subroutine . . . 6-23

Questions and Answers About Attach Points . . . 6-25

7 Text Storage and Retrieval

Subroutines for Accessing Files . . . 7-1

Difference Between Variable-length and Fixed-length Record Files . . .

Variable-length Records . . . 7-3
Fixed-length Records . . . 7-3
Hybrid Approaches. .. 74
Maximum Length ofaFile ... 7-5

How to Open, Extend, Truncate, and Close Text Files . . . 7-5
Opening aFile...7-6
Positioning a File to End—of-file ... 7-13
Truncating a File . . . 7-16
Closing aFile . .. 7-19

7-2

J) J

Y

10

How to Read and Write Variable-length Text Files . . . 7-23
The RDLINS and WTLINS Interfaces . . . 7-23
Sample Programs Using RDLINS and WTLINS . . . 7-27

How To Read, Write, and Position Fixed-length Files . . . 7-30
The PRWFSS Interface . . . 7-30
Sample Uses of PRWF$S . . . 7-38

Format of a Variable-length Record File . . . 741

Format of a Fixed-length Record File . . . 7-42
Determining the Blocking Factor . .. 743

Calculating Record Position During Random-access Operations . . .

Questions and Answers About Text Files . . . 745

Data Storage and Retrieval
File Organization . . . 8-1

Segment Directories . .. 8-2
Subroutines Used to Access Segment Directories . . . 8-2
How to Open a Segment Directory . . . 8-3
How to Position a Segment Directory . .. 8-9
How to Extend a Segment Directory . . . 8-13
How to Open a Member File Within a Segment Directory .
How to Delete a Member File Within a Segment Directory
Scanning a Segment Directory . . . 8-23
File Directories . . . 8-28
Creating a File Directory . . . 8-28
Opening a File Directory . . . 8-32
How to Scan a File Directory . . . 8-37
Reading and Writing Data Files . . . 840

Questions and Answers About Data Files . . . 8-41

Access Control Lists (ACLs)

Subroutines That Manipulate ACLs . . . 9-1
Setting Access on Files and Directories . . . 9-1
Creating Access Categories . . . 9-2
Changing Access to a File System Object . . . 9-6

Setting the Access for an Object to That of Another Object . .

Reading the Access for an Object . . . 9-8
How Programs Should Parse an ACL ... 9-10
Questions and Answers About ACLs . .. 9-10

File Attributes

How to Read the File Attributes of an Object . . . 10-1
Example. .. 10-5

Setting File Attributes . . . 10-7

.. 8-16
... 821

.9-6

7-44

ix

11 Disk Quotas

Retrieving Information on Disk Space in Use ... 11-1
Retrieving Quota Information for a Directory . .. 11-1
Retrieving Quota Information for the MFD . . . 11-3

Improving Quota System Performance . .. 114

12 Interprocess Communication via the File System

General Concepts. .. 12-1

File and System Read/Write Locks . . . 12-1

Caveats on Using the File System for Interprocess Communication . . . 12-3
Sample Models of Communication via File System . . . 12-5

Multiple Processes Creating File-based Transactions . . . 12-5

Multiple Competing Servers Accessing File-based Transactions . .. 126

Two—process Transaction Management . . . 12-9

Multiple Processes Accessing a Database . . . 12-9

Appendix

A File System Glossary . .. A-1

Index

) J

b

About This Book

The Advanced Programmer’s Guide is a four—volume series that provides
technically sophisticated information for systems—level programmers. This
series supplements basic reference information found in other PRIMOS®
manuals.

r The books in this series are intended for programmers who are experienced with
the PRIMOS operating system and 50 Scries™ systems. In addition, you should
be experienced in at least one high—level programming language supplied by
Prime (preferably PL/I, C, or FORTRAN-77).

The Advanced Programmer’s Guide series consists of four volumes:
® Advanced Programmer’s Guide I: BIND and EPFs (DOC10055-2LA)
r ® Advanced Programmer’s Guide I1: File System (DOC10056-3LA)

® Advanced Programmer’s Guide I11: Command Environment
(DOC10057-2LA)

® Advanced Programmer’s Guide: Appendices and Master Index
(DOC10066—4LA)

The four volumes of the Advanced Programmer’s Guide can be ordered as a set
using DCP10171.

r

Specifics of This Volume

This volume contains detailed technical information about the PRIMOS file
system. It describes the systems—level programmer interfaces to the file system,
including those used to attach to file system objects, to set access rights on file
system objects, and to manipulate text and data files. In addition, it describes
disk quotas, inter—process communications, and programer interfaces to the
singly—rooted file system. This volume provides information about Prime
subroutines used solely to interact with the file system.

' & . Third Edition ~ xi

Advanced Programmer’s Guide Ii: File System

Specifics of the Series

The Advanced Programmer’s Guide series divides information among the
volumes of the set as follows:

Volume I: BIND and EPFs describes Executable Program Formats (EPFs),
including registered EPFs, and describes the EDIT_BINARY binary file
editor.

Volume II: File System (this volume) describes the PRIMOS File System.
It provides detailed information about the File Server, access rights, search
rules, and data and text manipulation in file system objects.

Volume III: Command Environment describes how to use EPF
initialization routines and how to invoke a user program as a command,
subroutine, or function from a user program or from PRIMOS command
level.

Appendices and Master Index provides appendix material applicable to all
of the volumes in this document set. It lists the standard error codes used
by PRIMOS, along with their messages and meanings. It describes the
new features of recent PRIMOS revisions that may be of interest to
advanced programmers. Finally, it provides a Master Index to all four
volumes of the Advanced Programmer’s Guide series.

This series describes the lowest-level interfaces supported by PRIMOS and its
utilities. It is designed for systems—level programmers who are designing new
products, such as language compilers, data management software, electronic
mail subsystems, utility packages, and so on. Such products are themselves
higher-level interfaces, typically used by other products rather than by end users,
and therefore must use some or all of the low-level interfaces described in this
series for best results. Most of the information in this series deals with interfaces
to PRIMOS that are typically used only in small portions of a product and with
overall product design issues that should be considered before coding begins.

Higher—level interfaces not described in this guide include:

Language—directed I/O

The applications library (APPLIB)

The sort packages (VSRTLI and MSORTS)

Data management packages (such as MPLUSLB and PRISAMLIB)

Other subroutine packages

All the above interfaces are described in other manuals, such as language
reference manuals and the Subroutines Reference series.

Xii Third Edition

))

N\

r
~

)

References

About This Book

Users of this series should be familiar with the PRIMOS User’s Guide
(DOC4130-5LA), which contains information on system use, directory structure,
the condition mechanism, CPL files, ACLs, global variables, and how to load
and execute files with external subroutines. New information for Rev. 23.0 can
be found in the PRIMOS User’s Release Document (DOC10316-1PA). You
should also have an understanding of the architecture of Prime systems, as
described in the 50 Series Technical Summary (DOC6904--2LA) .

You should use the Advanced Programmer’s Guide along with the standard
PRIMOS references: the PRIMOS Commands Reference Guide
(DOC3108-7LA updated by RLN3108-71A) and the five—volume Subroutines
Reference series:

o Subroutines Reference I1: Using Subroutines (DOC10080-2LA updated by
UPD10080-21A)

e Subroutines Reference II: File System (DOC10081-2LA)
e Subroutines Reference I11: Operating System (DOC10082-2LA)
o Subroutines Reference IV: Libraries and I'/0O (DOC10083-2LA)

® Subroutines Reference V: Event Synchronization (DOC10213-1LA
updated by UPD10213-11A)

For a complete list of available Prime documentation, consult the Guide to Prime
User Documents.

Third Edition Xiii

Advanced Programmer’s Guide II: File System

Prime Documentation Conventions

Xiv

Third Edition

The following conventions are used throughout this document. The examples in
the table illustrate the uses of these conventions.

Convention

Uppercase

Italic

Abbreviations

Brackets

Braces

Braces within
brackets

Monospace

Underscore

Hyphen

Ellipsis

Parentheses

Explanation

In command formats, words in
uppercase bold indicate the names of
commands, options, statements, and
keywords. Enter them in either
uppercase or lowercase.

Variables in command formats, text,
or messages are indicated by lower-
case italic.

If a command or option has an abbre-
viation, the abbreviation is placed
immediately below the full form.

Brackets enclose a list of one or
more optional items. Choose none,
one, or several of these items.

Braces enclose a list of items.
Choose one and only one of these
items.

Braces within brackets enclose a list
of items. Choose either none or only
one of these items; do not choose
more than one.

Identifies system output, prompts,
messages, and examples.

In examples, user input is under-
scored but system prompts and out-
put are not.

Wherever a hyphen appears as the
first character of an option, itis a
required part of that option.

An ellipsis indicates that you have
the option of entering several items
of the same kind on the command
line.

In command or statement formats,
you must enter parentheses exactly
as shown.

Example

SLIST

LOGIN user-id

SET_QUOTA
SQ

w |~ BRIEF
—-SIZE

filename
CLOSE {_ ALL

BIND [pa:}‘mame}
options

address connected

OK, RESUME MY PROG

SPOOL -LIST

pdev-1 [...pdev-n]

DIM array (row, col)

) J

J

h)

)

Data

What Is a File System?

It is hard to imagine a large corporation, a small business, or even an individual
being able to do any business at all without some form of data. Something as
simple as an address book is one kind of data that an individual might use. A
checkbook is another. Businesses use data in the form of mailing lists, accounts
receivable, accounts payable, cash on hand, and many other collections of words
and numbers in their daily transactions. In order to use these words and numbers
in any efficient and meaningful way, they must be organized in some fashion,
and there must be tools by which their owners can manipulate them. The
function of a file system is to provide the organization and the tools to store and
use information by means of a computer.

The first characteristic of a file system, then, is that it is a collection of data —
information in the form of letters, digits, and symbols arranged into useful
groups of words and numbers. If the groups are put into some fixed sequence,
such as a last name, a first name, a middle initial, and a telephone number, each
group can be called a field. A field is usually designated as either alphanumeric
(consisting of a mixture of letters, digits, and symbols) or numeric (consisting
mostly of digits, but possibly including a plus or a minus sign, a decimal point,
one or more commas, and perhaps a currency symbol). Other kinds of fields,
such as pure alphabetic or binary, are recognized by some programming
languages.

A record is the basic unit upon which most file systems operate. A number of
fields can be combined into a structured element known as a data record. There
are also unstructured records, which consist of strings of alphanumeric
information of varying lengths; these are, strictly speaking, also data records, but
to distinguish between structured and unstructured records, the unstructured
records can be called text records. As a programmer, you will be using both
kinds of records: you will write programs in the form of text records; your
programs will most likely deal with data records.

Third Edition 1-1

Advanced Programmer's Guide Il: File System

Storage

Objects

1-2

Third Edition

The second characteristic of a file system is that its data has been placed in some
kind of storage from which it can be retrieved when needed. Many forms of
storage exist: punched cards, paper tape, magnetic tape, and various forms of
magnetic disks. In these chapters we deal only with storage on disks.

Having a collection of data arranged into fields and records and stored on a disk
is a big step toward organizing the data. It is really all that you absolutely need
to store and retrieve data. Given a set of commands that the computer
understands, you could at this point successively retrieve records until the
desired one is found, and then do some kind of operation on it.

But this is a tedious task, and there might be more than one class of records upon
which you want to perform different kinds of operations. For example, the
telephone number records would serve a purpose different from that of, say,
accounting records, and for reasons of efficiency or privacy, it would be useful
to keep these two classes of records separate.

A useful file system should be able to segregate different classes of data into
different groups, or objects, the most basic of which is the file. The previous
paragraph hinted at the existence of two files, one a list of names and telephone
numbers, and the other a list of names and accounting information. A company
employee whose job is to do telephone surveys of customers could retrieve their
telephone numbers from the first file without having to read and skip, or even
being able to see, any of the information about their accounts in the second file.

You can also imagine a second level of segregation, in which files, as well as
records, might be grouped together to serve some particular purpose. A
company with a nation-wide customer base, for example, would maintain
account files of all of its customers, but might want to operate on them on a
state—by—state or regional basis. One approach to this task would be to cluster
the files for each state or region into another kind of object: a catalog containing
the names of the files in the cluster. These objects serve as directories to the
objects contained in them, and indeed, some file systems, including the PRIMOS
file system, call them just that. Directories, along with a suitable language,
enable identical actions to be performed on several files by simply addressing the
directory that contains them.

File systems provide other kinds of objects, whose purposes are to ease the
burden of dealing with large collections of data, controlling access to them, and
increasing the efficiency of operating on them. What PRIMOS provides is
described in Chapter 4, Programmer Interfaces to the File System. How you as a
programmer use them is explained in the remainder of this volume.

J) J

J J

Y

\

Procedures

What Is a File System?

No matter how sophisticated it may be, data organization is only an idea, useless
without some way to implement it, and then to act on the organized data. For
these purposes, a set of tools, or procedures, is needed. Procedures, written into
programs, enable you to create file system objects, write data into them, read
data from them, control access to them, and perform other related functions on
both the objects themselves and the information contained in them.

File Systems: Summary

No matter how elementary or sophisticated your work is, you need a file system
to perform that work. File systems come in many forms, with a variety of
capabilities ranging from simple file creation, reading, and writing to the
construction of highly complex database with hierarchical structures and
intricate access control mechanisms. But the ultimate goals of any file system are
simple: to organize data, to enable and simplify access to it, and to exercise
control over who can do what to it.

The next three chapters explain the elements of the PRIMOS file system and
how they work together to achieve these goals.

Third Edition 1-3

A

r

N

The PRIMOS File System

This chapter describes the structure and components of the PRIMOS file system.
The topics covered include

e What is the PRIMOS file system?

e The file system before Rev. 23.0 (multi—rooted hierarchy)
e The Rev. 23.0 file system

e The singly-rooted hierarchy

e The common file system name space

e PRIMOS file system objects

What Is the PRIMOS File System?

The PRIMOS file system is Prime’s implementation of a collection of objects
and procedures that let you create a file storage structure. You manipulate this
file storage structure in order to fulfill your data storage, access, and security
needs.

Each Prime machine has one or more physical disks that store data. Each
physical disk is logically divided into one or more sections called disk partitions.
For example, one partition would hold the tools for administering the system,
another would hold user directories, another would hold data management
databases, and so forth. Each disk partition, in turn, is made up of directories. A
directory is the logical “file drawer” that holds the files. The files themselves
hold the data.

The PRIMOS file system theory and structure is described in more detail in the
sections following. The first section following presents a useful review of the
file system structure before Rev. 23.0. The remainder of the chapter deals with
the PRIMOS file system at Rev. 23.0.

Third Edition 2-1

Advanced Programmer’s Guide ll: File System

The File System Before Rev. 23.0

Before Rev. 23.0, PRIMOS organized a directory structure like an inverted tree.
The pre-Rev. 23.0 directory tree consists of a root (the disk partition), branches
(the directories), and leaves (your files — the objects of most of your work with
the file system). Each disk partition is the source of a tree whose components
have distinct names. See Figure 2-1 for an illustration of a machine with the
pre-Rev. 23.0 directory tree structure.

System SYS1

TOOLS Disk Partition

FORMULAE PROGRAMS Directories

TIDES.PASCAL) (ELLIPSE.F77 GRAVITY.CC

Files

10201.D10056 3LA

Figure 2—-1. Pre—Rev. 23.0 Directory Tree Structure

In the above example, the tree hierarchy of one of the disk partitions on System
SYS1 is shown. This partition is called <TOOLS> and contains two directories,
FORMULAE and PROGRAMS; PROGRAMS contains files. The directories
and files that reside under <TOOLS> use its name as a starting point for their
own names. This, in turn, determines where these objects are located:

¢ <TOOLS>FORMULAE

e <TOOLS>PROGRAMS

e <TOOLS>PROGRAMS>TIDES.PASCAL
e <TOOLS>PROGRAMS>ELLIPSE.F77

e <TOOLS>PROGRAMS>GRAVITY.CC

2-2 Third Edition

J

J

J

YD)

The PRIMOS File System

Typically, a system contains more than one partition, each one having a separate
starting point with directories and files under it. The name of each object under
that disk partition is ultimately qualified by the disk. That is, the pathname of
each begins with the root name, and is said to be a fully—qualified pathname.

Disk Trees on More Than One System

Many sites have more than one system, or machine, with users having to utilize
data on more than one machine. These users must use more than one tree to
accomplish their tasks. Consider two different disk tree hierarchies on two
different systems. See Figure 2-2 for an illustration of two machines with the
pre—Rev. 23.0 directory tree structures.

System SYS1 System SYS2

Disk Partition TOOLS USERS Disk Partition

Directories

FORMULAE PROGRAMS GALILEO NEWTON KEPLER

Files
TIDES.PASCAL) (ELLIPSE.F77 GRAVITY.CC

Files
102.02D10056.3LA

Figure 2-2. Pre—Rev. 23.0 Directory Tree on Two Machines

The illustration shows a disk tree on two different systems: <USERS> on System
SYS2 and <TOOLS> on System SYS1. Each disk is a separate and distinct root
(starting point) for the names (and thus the locations) of their subordinate file
system objects.

The collection of names of all the file system objects is known as the file system
name space. The name of every object in the pre—Rev. 23.0 tree hierarchy is
defined by its disk partition. Therefore, the type of configuration illustrated in
Figure 2-2 is called a multi-rooted name space.

Third Edition 2-3

Advanced Programmer’s Guide II: File System

Limitations of Multi-rooted Name Space

In a multi-rooted name space, the manner in which you named and referenced
every file system object was limited by that object’s physical location. Consider
another example based on Figure 2-2 in the previous section. Suppose user
KEPLER, on System SYS2, has been told to copy a file called
<TOOLS>PROGRAMS>ELLIPSE.F77, which resides on System SYS1.
However, KEPLER does not know that, even though he can access System
SYS1, the remote disk <TOOLS> was never added to his system’s local disk
table. If he attempts to copy ELLIPSE.F77, the COPY command returns an
error:

OK, COPY <TOOLS>PROGRAMS>ELLIPSE.F77 *>==
Not found. Unable to attach ‘‘<TOOLS>PROGRAMS’’ (copy)
ER!

In Figure 2-2, System SYS1 and System SYS2 have been networked because
users on both machines have common tasks to perform. However, user KEPLER
encounters problems performing his tasks because there is no transparent access
to file system objects between these two machines. Disks on a pre-Rev. 23.0
system must be administered manually, and added manually. KEPLER must now
wait for the remote disk to be added to his system’s disk table, or obtain a remote
user ID, before he can proceed.

This is symptomatic of the limitations of the pre—Rev. 23.0 file system in a
multi-machine environment. Even though your machine is part of a network,
tasks involving other machines can be cumbersome because your view of the file
system is local, encompassing only your machine.

Also, there is the danger of inadvertent diskname duplication; PRIMOS does not
inform you if there are two identical disknames in the same network
environment. This means that a fully—qualified pathname may not be unique.

The Rev. 23.0 File System

24

Third Edition

A number of changes have been made to the PRIMOS file system. These
changes allow a collection of 50 Series machines to share what is known as a
common file system name space. Among the advantages of configuring a
common file system name space are

o Administration of disks is made easier, since remote ADDISK commands
are no longer needed.

o Distributed applications are easier to build, since pathnames uniquely
reference file system objects regardless of which machine the reference
came from.

) J

)

The PRIMOS File System

¢ The limit on the number of disk partitions which can be referenced from a
single machine is increased from 238 to 1280.

Your System Administrator might decide not to configure a common file system
name space, but in order for PRIMOS to support the new scheme, there are some
file system changes that affect everyone at Rev. 23.0. The most notable of these
changes is the singly—rooted file system hierarchy. This hierarchy is
implemented by means of a root directory and changed pathname syntax and
semantics of pathnames.

The Root Directory

At Rev. 23.0, the PRIMOS file system has been modified to have a single root
directory. This root directory, designated as ‘‘<”, represents a level higher than
the MFD in the file system hierarchy. It is the starting place for interpreting
pathnames. The root directory contains only directories, which correspond to the
MFDs of local and remote disk partitions. Therefore attaching down from the
root directory places a user in the MFD of a specific disk partition.

The root directory has many of the characteristics of other directories, yet is
special in a few ways. Like other directories, you can attach to the root and list
its contents. However, it cannot be deleted or modified. The only way to add or
delete entries in the root is to use the ADDISK and SHUTDN commands,
discussed in the Operator’s Guide to System Commands.

The Singly-Rooted File System Directory Structure

Like the multi-rooted directory structure, the singly—rooted file system directory
structure is also organized like a tree: it has a root (the root), branches (the
directories), and leaves (the files). See Figure 2-3 for an illustration of this
structure.

Third Edition 2-5

Advanced Programmer’s Guide Il: File System

2-6

< Root Directory

Directory TOOLS . USERS Directory

FORMULAE PROGRAMS GALILEO NEWTON @
Files
TIDES.PASCAL) (ELLIPSE.F77 GRAVITY.CC
Fll es 102.03.D10056 3LA

Figure 2-3. Singly—rooted Directory Tree Structure

The MFD of each of the disk partitions appears as a directory under the root
directory. Partitions on one machine or more than one machine are under the
root. Examine the contents of the root by issuing the ATTACH and LD
commands, as follows:

OK, ATTACH <
OK, LD

< (LU access)

321 Directories.

AAAAAA AAAAAB AAAAAC AAAAAD
AAAAAE AAAAAF AAAAAG AAAARH
AAAAAT AAAAAJ AAAAAK AAAAAL
AAAAAM AAAAAN AAAAAQ AAAARAP
AAAAAQ AAAAAR AAAAAS AAAAAT
AAAAAU AAAAAV AAAAAW AAAAAX
AAAAAY AAAAAZ BAAAAC BAAAAD
BAAAAE BAAAAF BARAAG BAAAAH
BAAAAI BAAAAJ BAAARK BAAAAL
--More--Q

OK,

Third Edition

J J

J

AR

The PRIMOS File System

The Common File System Name Space

At Rev. 23.0, System Administrators can create a common file system name
space for a collection of machines. Having a common file system name space
means that all disk partitions on a specified collection of machines are visible to
every machine in that collection. You can reference file system objects within
that collection (provided that you have the proper PRIMENET RFA access and
the proper ACL rights). DSM defines the collection of machines which share a
common file system name space.

All machines which share the file system name space see a common and
complete view of the file system hierarchy, because PRIMOS replicates the root
directory on each machine. Since the starting point for interpreting pathnames at
Rev. 23.0 is the root directory, having identical root directories on a collection of
machines means that fully—qualified pathnames always mean the same thing.

The Name Server

The root directory is replicated by starting up the process server called Name
Server, new at Rev. 23.0. The Name Server replicates the root directory among a
DSM-defined collection of machines. Your System Administrator creates a
common file system name space on a pre—determined collection of machines by
using DSM to define which machines are in the same name space, then starting
the Name Server on each of those machines.

The foundation for the common file system name space boundaries is the DSM
config group. Configuring DSM over the network means dividing it into groups
of machines, none of which overlap. Each group has a consistent picture of
which machines are in the group. This view of the network is exactly what is
needed by the Name Server. Thus, when each Name Server is started, it must
consult DSM to determine which other machines have Name Servers it must
consult with,

The Global Mount Table

The Rev. 23.0 file system interprets pathnames based on the root directory, not
the disk table. Underlying the root directory is a new PRIMOS database which
contains the total list of disk partitions and portals which a given machine can
reference. (Portals are discussed in the next section.) This database is known as
the Global Mount Table (GMT).

For every disk partition or portal in the local file system name space, the GMT
lists

¢ on which machine each disk or portal is located

¢ where in the common file system name space the disk or portal is
“grafted” (its pathname).

Third Edition ~ 2-7

Advanced Programmer's Guide Il: File System

28

Third Edition

To obtain this information, use the LIST_MOUNTS command. This command
has a number of options which allow users to relate pathnames to specific disks
and systems, machine names to disks, and disk names to system names. For
more information about LIST_MOUNTS, see the PRIMOS User’s Release
Document and the Operator’s Guide to System Commands.

Logical Mounts

At Rev. 23.0, disk partitions have expanded capabilities, thus adding to their
flexibility in the common file system name space. It is possible to

® add adisk partition to the root with a name that is up to 32 characters long,
for example, <A_REALLY_LONG_DIRECTORY_NAME. This is in
keeping with the fact that partitions are treated as directories in the
common file system name space.

e graft a disk partition over any existing directory in the tree hierarchy
except the MFD. The directory over which the partition is mounted is
called the mount—point directory, and its contents are thereafter
inaccessible until the grafted partition is shut down. One advantage of
adding partitions that are subordinate to other partitions is that it is easier to
extend the storage capacity of systems whose applications are written to
use fully—qualified pathnames. Another advantage is that a directory tree
can expand as much as is required.

In both of the above cases, the partition is called a logical mount. The System
Administrator adds a partition as a logical mount by using a new option,
~MOUNT_PATH, of the ADDISK command. The -MOUNT_PATH option is
described in the Operator’s Guide to System Commands, and logical mounts are
discussed in more detail in the System Administrator’s Guide, Volume I: System
Configuration.

Portals

AtRev. 23.0, a Network Administrator can partition a collection of Prime
machines into one or more common file system name spaces by using the Name
Server. Remember that a common file system name space consists of all the disk
partitions on all of the machines that are members of the same DSM config
group, and that disk partitions are shared by all machines in the common file
system name space. To reference a disk partition on a remote machine, however,
it is necessary to use a portal. A portal acts as a gateway between name spaces,
allowing you to transparently perform operations upon file system objects in
other name spaces (provided that the ACLs are set correctly and that the target
partition is not labeled as private).

J

“N

The PRIMOS File System

)

A portal is a directory which has been transformed so that references to it are
redirected to a directory on a remote machine. There are two types of portals,
and each type affects where the target of the portal is:

® A root—directed portal, the more powerful of the two types, redirects
references to the root directory of another machine. The remote machine
can be any machine outside your file system name space as long as it
resides on the network.

® A disk—directed portal redirects references to the MFD of a specified
disk. This type of portal is defined primarily for compatibility with earlier
revisions of PRIMOS which do not have a root directory.

Portals can only be created by using the ADD_PORTAL command on the
~ supervisor terminal. The command must specify a fully—qualified pathname of
“ an existing directory which is to be transformed into a portal, and also must

specify the node name of a machine which is the target of the portal. Remove a

portal from a directory by using the REMOVE_PORTAL command at the

supervisor terminal. Programmers with privileged access can add or remove
portals using the NAMS$AD_PORTAL and NAM$RM_PORTAL subroutines,

respectively. For more information about these subroutines, see Chapter 4,

Programmer Interfaces to the File System. For more information about

ADD_PORTAL and REMOVE_PORTAL, see the Operator’s Guide to System
' & Commands.

PRIMOS File System Objects

The remaining portion of this chapter describes in detail the objects that make up
the PRIMOS file system. The next sections describe

r e Naming and accessing objects
e Root directories
e Physical disks
¢ Disk partitions
e Directories
e Segment directories
® Access categories

e Files

r Third Edition ~ 2-9

Advanced Programmer’s Guide II: File System

Note

2-10 Third Edition

Naming and Accessing Objects

Each object must have a name so that it can be uniquely identified. The person
who creates an object assigns it a name. Disk partitions and directories are
usually assigned names by a System Administrator. You, the programmer, assign
your own names to objects that belong to you: user directories, segment
directories, access categories, and files.

Once you start using the tree structure, you will want to store some data in it, and
reuse the data that you have stored. The PRIMOS file system supports three
access methods, or ways of reading and writing data: the Sequential Access
Method (SAM), the Direct Access Method (DAM), and the Contiguous Access
Method (CAM)

You will want to have some control not only over who has access to your files,
but also over what kinds of things those who do have access can do to your files.
Other users who share your system will want to exercise the same control over
theirs. Typically, you might want all members of your department to be able to
read your files, a select few to be able to change them or add to them, and you
alone to be able to create and delete them. The PRIMOS file system gives you a
variety of access control tools to establish whatever degree of control you wish
over any, some, or all of the objects that belong to you. These tools involve user
identifications and a set of permissions, or access rights, which together make
up Access Control Lists (ACLs). An older form of access control, the directory
password, is still supported, but its use is declining in favor of the access control
list.

The tree structure is made up of file system objects. An object is a collection of data that
has its own name, the name by which you can refer to the object when you want to do
something with it. The paragraphs that follow describe each of these objects in detail.

Root Directories

At the top of the file system tree structure is the root directory. This is the
starting point for referencing all file system objects within that tree. The root is
represented by the root character, <, which is the lesser-than mathematical
symbol, also called the right-angle symbol. A fully—qualified pathname is an
absolutely unique name across the common file system name space for those
systems on which the Name Server is running.

You can reference the root by itself using the ATTACH command or the AT$
subroutine.

) J

J

EEN

OK, ATTACH <

OK, LAC

ACL protecting ”<Current directory>”:

SREST:

OK, LD

< (LU access)

321 Directories.

ADDNTS
ARDHIV
BTD1
DOMAND
DQGR11
DQGR15
DQGR19
DQUGR1
DQUGR?7
DSWQRJ
DATA3
DBMSRD
DMDQRF
DMYGRQ
DRAF/I
FDMS36
FNGDB2
FNU2
FNVIR1
--More--q

OK,

LU

ADMFNL
AUX1
DADDB2
DOMMSW
DQGR12
DQGR16
DQGR20
DQUGR4
DROM1
DSWTST
DBGRQ
DDMDFV
DMGSRD
DMYSRD
DRAFTW
FMS1
FNGDB3
FNU3
FNVIR2

The PRIMOS File System
AQQLID ARDFNU
BAVFL BOMDOD
DKLIST DMQFNW
DOMQRJ DORF
DQGR13 DOGR14
DQGR17 DQGR18
DQGR21 DQUDOD
DQUGRS DQUGRS6
DSF&G DSWINT
DATAl DATA2
DBGRQ2 DBGRQ5
DIDT2X DISDVR
DMGTST DMROAM
DMYTST DRAF/D
DSAG DUMQM
FNGDB FNGDB1
FNGDB4 FNU1
FNUDA2 FNUDB
FNVIR3 FNVIR4

A leading < character in a pathname signifies a fully-qualified pathname. The
root symbol is acceptable by itself as a valid pathname, but it is not a valid
filename. You can generally use the root directory as any other directory. Note
that only the ADDISK and SHUTDN commands can change the contents of the

root.

Root Syntax Change: The new root syntax satisfies the pre-Rev. 23.0
syntax rules as a fully—qualified pathname. However, the pathname
<TOOLS>PROGRAMS>ELLIPSE.RUN is interpreted differently at Rev. 23.0:

Third Edition 2-11

Advanced Programmer’s Guide Il: File System

2-12 Third Edition

Pre-Rev. 23.0 The pathname is interpreted as the file
ELLIPSE.RUN which resides in the top-level
directory PROGRAMS, which in turn resides in the
disk partition with the name TOOLS.

Rev. 23.0 The pathname is interpreted as the file
ELLIPSE.RUN which resides in the directory
PROGRAMS, which in tumn resides in the directory
TOOLS, which resides in the root directory (<).

Root Characteristics: The root directory has special characteristics because
it is both a replicated directory and it is also the starting point of pathname
interpretation in the common file system name space. These characteristics are
summarized as follows:

ACL protection The ACLs on the root directory itself are
$REST:LU; no other objects may be created in the
root since it is the starting point of the common file
system name space. The only way to modify the
contents of the root is with either the ADDISK or
SHUTDN commands.

Open/close operations You cannot directly open the root; a SRCH$$ <
operation fails since < is not a valid filename. The
root can be indirectly opened by calling SRSFX$ <
or by attaching to the root using ATSROOT and
using SRSFX$ with a zero-length name. The root
can be closed by calling SRSFX$, CLOS$FU, or
CLOS$FN.

Entries in the Root Directory: All root-directory entries are directories
which were created when the disk partition was added with the ADDISK
command. These root—directory entries generally take and maintain the
attributes of the MFD of that disk partition when the ADDISK operation was
done. The exceptions to this rule are the following:

e The DTM attribute is set to the time that the ADDISK command was
issued, regardless of the DTM setting on the MFD.

¢ The DTA is not set.

e The ACL which protects the MFD and the access which is computed from
it are determined dynamically. Therefore, the ACL and computed access
associated with the root—directory entry are always the same as the ACL
and computed access for the associated MFD.

e If the root—directory entry is created as a result of a remote ADDISK
command (which is only if the Name Server is not started), the attributes
contain either default or non—applicable values.

) J

J

)

5

Note

The PRIMOS File System

Physical Disks

Disk partitions are configured on physical disks. PRIMOS supports three kinds
of physical disks: Cartridge Module Devices (CMDs), Fixed Media Devices
(FMDs), and Storage Module Devices (SMDs). Each of these is available in
several storage capacities; the total range of usable storage space provided by the
three types is from approximately 30 usable megabytes for the smallest CMD to
approximately 759 usable megabytes for the largest FMD.

Storage space is divided into surfaces, tracks (or cylinders), and sectors, the
numbers and capacities of which are physical properties of the devices, and vary
from one type of device to another. All of the devices and their capacities and
physical characteristics are described in detail in the Operator’s Guide to File
System Maintenance.

Each physical disk, when it is first introduced to the PRIMOS operating system,
is initialized, or formatted, by a System Administrator or System Operator,
using the MAKE command (described in the Operator’s Guide to File System
Maintenance). One function of formatting is to create, on the physical disk, one
or more logical disks, or partitions, by defining the starting surface number and
the number of surfaces that make up the partition. (A partition may not be
smaller than one surface.)

Some physical disks can contain a single partition, while others either are
required to be or operate more efficiently when configured into two or more
partitions. The actual number of partitions that a physical disk ultimately
contains depends both on its physical characteristics and on the uses to which it
is put.

The System Administrator’s Guide, Volume I: System Configuration, discusses
the considerations involved in the planning and execution of disk partitioning.

Another function of formatting is to create a file known as the Disk Record
Availability Table (DSKRAT), which enables the file system to keep track of
which physical records contain data and which physical records are available to
have data stored in them. Each physical record on the disk is represented in this
file by one bit, whose value is 0 if the record is in use, and 1 if the record is
available. The DSKRAT file typically occupies several contiguous physical
records, starting at track 0, sector 2, on the first surface on the disk. The
DSKRAT file has the same name as the disk partition.

A physical record is not the same as the data or text records mentioned earlier; these are
called logical records. Unless otherwise noted, the term record in this book refers to
logical records.

Another function of formatting is to provide the disk with a bootstrap file
(named BOOT). This file contains machine—executable instructions that initiate
the loading of the PRIMOS operating system, enabling PRIMOS to be loaded
and started from any disk connected to the computer system. The bootstrap file

Third Edition 2-13

Advanced Programmer’s Guide II: File System

2-14 Third Edition

consists of a single physical record, located at track 0, sector O on the first
surface of the disk.

During formatting, the MAKE program may detect a *‘bad” sector, that is, a
sector having a flaw that makes it impossible to record data into that sector
reliably. When this happens, MAKE creates a file called the badspot file
(named BADSPT) in which are recorded the locations of any such sectors that it
encounters. The file system refers to this file in order to avoid attempts to write
data to unreliable sectors.

The DSKRAT, BADSPT, and bootstrap files are largely invisible and of little
direct interest to you as a programmer. The file system uses DSKRAT and
BADSPT automatically, and the bootstrap record is normally invoked only by
the System Operator.

The final object that formatting creates is the Master File Directory (MFD),
beginning at track 0, sector 1, on the first surface of the partition.

Disk Partitions

A disk partition, which may also be referred to as a logical disk or a volume, is
a logical section of the physical disk which is demarcated for a specific use. It
normally appears directly below the root in the root hierarchy and in this event is
called a root entry; however, logical partitions may also be grafted onto the tree
hierarchy at a point in the tree that is lower than the root.

The logical disk partition is treated as a directory by the Rev. 23.0 file system.
You can get a list of disk partitions by using the LIST_MOUNTS command, or
using the NAMS$L_GMT subroutine, described in the next section.

You can reference a disk partition (root entry) using the ATTACH command or
the AT$ or AT$ANY subroutines:

OK, ATTACH <DIRONE
OK, LD

<DIRONE>MFD (LUR access)

3 Files.

BADSPT BOOT DIRONE

2 Directories.
MFD RPTS

OK,

J J

J

M)

The PRIMOS File System

Notice that the pathname <DIRONE returned the pathname <DIRONE>MFD;
The two pathnames are synonymous.

Directories

A directory is a collection of file system objects assembled for a common
purpose.

System or Project Administrators often assign directories to individual users as
origin directories, although lower-level directories may be assigned just as well
for this purpose. (An origin directory is the starting point for a user to access
the file system.) The objects that can be immediately subordinate to a user
directory are lower-level directories, segment directories, access categories, or
files. In addition to pointing to the objects it contains, a directory also includes
access control and quota information for them,

Not all directories are assigned as origin directories. On the command partition,
for example, a number of directories immediately under the root entries may
contain objects such as command files, records of system usage, and other kinds
of data that are related to system operation.

Any directory that is one or more levels below a root—directory entry is a
lower-level directory, or simply a directory. Directories can point to the same
kinds of objects that root entries can point t0, including more lower-level
directories. Directories can be nested to many levels.

While the nesting level limit depends on such factors as the physical capacity of
the disk on which the directories reside and on quotas that may have been
established on their superior directories, the real determining factor may be the
length of the fully—qualified pathname, which is limited to 256 characters. User
access to and interaction with a lower—level directory whose pathname contains
more than 256 characters is uncertain, because the pathname is truncated.
(Pathnames are explained in the section entitled Object-naming Conventions in
Chapter 3.)

Segment Directories

The directories described so far all fall into a class known as file directories.
There is another class known as a segment directory, used primarily to contain
program segments created by the PRIMOS SEG command, and multiple-index
files such as those created by the MIDASPLUS or Prime INFORMATION
subsystems.

Segment directories can be contained in file directories just as any other file
system object can. But they can point only to numbered data files and segment
directories, and cannot contain the names of lower—level directories or other
objects such as data files or access categories. Their main function is to increase
the efficiency of certain utility and application programs through the use of

Third Edition 2-15

Advanced Programmer’s Guide l: File System

2-16 Third Edition

numbered, rather than named, objects. Once the identifying number of an object
is made known to PRIMOS, it is more efficient to locate and operate on than is
an object identified by a pathname or a filename.

You can create a segment directory explicitly from a terminal or use PRIMOS
subroutines, expressly designed for this purpose, in any program that is intended
to manipulate segmented files. You can see the evidence of a segment directory’s
creation by inspecting the contents of the file directory that contains it, but its
actual creation is transparent to you as you sit at your terminal.

Refer to Chapter 8, Data Storage and Retrieval, for further information on
segment directories and to Subroutines Reference I1: File System, and to the
SEG and LOAD Reference Guide for information on segmented programs.

Access Categories

An access category is a directory entry that contains an access control list.
When you specify that a certain set of users have specific rights to operate on
one of your file system objects, that list of users and rights (the ACL) takes up
space in the directory that contains the object. If a number of objects require the
same list, creating that list for each individual object becomes wasteful, and it is
useful to be able to specify this common list by defining it once and having it
reside in only one place. The function of the access category is to contain the
list; the access to each object can then be set by referring to the name of the
access category.

The subject of access control and ACLs is explained in more detail in the section
entitled Access Control in Chapter 3 of this manual.

Files

A file is an object that contains a collection of user data. In this broad sense, any
file system object can be thought of as a file, since all objects presumably
contain information useful to their users. A root entry, for instance, has
information that its user, the file system, uses in its search for file system objects.
But a file, from the point of view of the user, contains no pointers to further
subordinate objects; it is a leaf at the end of a branch in the tree structure.

There are system files and user files. System files are created by PRIMOS or its
administrators and operators for use by the operating system. Some of them can
be read by users for purposes such as listing users on the system and getting
status information of various kinds. But because of the access controls usually
applied to them and their directories, few system files, if any, can be changed or
deleted by the ordinary user.

User files, on the other hand, are created by you and other users to fulfill the
needs of your application programs. You normally create structured data files by
running your application programs, or text files by using a text editor or word

J)

-~
“N\

3

The PRIMOS File System

processing application. You can control access to your files as tightly or as
loosely as you wish to satisfy your security needs and those of any group(s) to
which you may belong.

Third Edition 2-17

A

)

Accessing the PRIMOS File
System

This chapter describes the concepts you the programmer need to know in order
to access the PRIMOS file system. Topics covered include

e Object-naming conventions
e Pathnames

e Access control

Object—naming Conventions

Every directory, access category, and file must have an identification that is
unique within the entire collection of objects known to the file system. This
requirement appears, at first glance, to place a heavy burden on you — that of
knowing about the name of every existing object any time you want to assign a
name to a new object. But PRIMOS eases this burden in much the same way as
a mailing address enables the Postal Service to locate a particular John Smith: by
using a hierarchical access path to John Smith through a state, city, street name,
and house number. It is this access path that is unique, even though some of the
individual components may not be.

The mailing address is interpreted by reading geographical elements in a specific
order, from the most inclusive to the least inclusive. The file system’s access
path is formed and interpreted in precisely the same way, by combining the
names of file system objects in order, from the most to the least inclusive. The
resulting string of names (plus some separators to show where one name ends
and another begins) is called a pathname, and, for the file system, it is only this
pathname that must be unique.

Thus, the only uniqueness requirement you must satisfy is that, within a given
directory, each object must have a unique name. This is the same as saying that
in a given city there can be only one Washington Street (but there could be a
Washington Street in every city in the United States).

Third Edition 3-1

Advanced Programmer’s Guide ll: File System

3-2

Third Edition

Objectnames

An objectname is a string of up to 32 characters selected from the following set:

letters (A through Z)
digits (0 through 9)
special characters _#$—.* &/

An objectname cannot begin with a digit or contain any spaces. Also, you should
avoid names beginning with _, —, &, and $, because they can cause confusion in
certain commands and syntaxes. You can use the underscore (_) to represent a
space if you want your objectname to consist of two or more words. Use the
period (.) for separating objectname components.

An objectname can consist of one or more components. When there are two or
more components in an objectname, each is separated from the next by a period.
Components can be used for whatever purpose you wish, such as to identify
several objects as being related to each other in some way. As a programmer,
you use components as suffixes to source—text filenames to identify the language
used in writing your programs (for example, .FTN for FORTRAN programs, or
.CBL for COBOL programs). PRIMOS provides subroutines whose functions
are to manipulate suffixes. Refer to the PRIMOS User’s Guide for an
explanation of components and for a list of suffixes that Prime software
recognizes.

Although the file system allows up to 16 components in an objectname, two or
three are usually sufficient for most practical applications. In any case, remember
that an objectname, including all components and their periods, cannot be more
than 32 characters long.

Pathnames

A pathname is a string of objectnames representing the access path that the file
system follows to get to a specific object. There are several kinds of pathnames,
detailed in the following paragraphs.

Fully—qualified Pathname: From the file system’s point of view, an
object’s pathname contains the name of each directory level that must be crossed
to get to the desired object. Such a pathname is called a fully—qualified
pathname.

The fully—qualified pathname begins with the root directory, represented by the
lesser—than mathematical symbol (<). Following the root is the disk partition,
also called the root—entry directory, since the Rev. 23.0 file system treats disk
partitions directly below the root as directories. After the disk partition, you

J J

39

Accessing the PRIMOS File System

typically find the names of directories progressively narrower in scope until you
reach the one containing the desired object. The absolute pathname ends with
the name of an object. A pathname cannot be more than 256 characters long.

The name of the root is the < symbol, and each subsequent objectname is
separated from the next by a > symbol. Following is a typical absolute pathname:

<DIRECTORY>DIRECTORY>. . . >~OBJECTNAME

Relative Pathname: As a terminal operator or a programmer, you often
need to supply only part of an absolute pathname: the part that follows the name
of the directory you are currently working in. This kind of pathname is called a
relative pathname; it is relative to the directory you are in. It can be used
because the file system keeps track of the elements of the absolute pathname that
precede and include the name of this directory. Most commands that you

invoke from your terminal, as well as many of the file system subroutines you
write into your programs, allow you to use relative pathnames.

You use a relative pathname whenever you want to work on an object that is
subordinate to the directory you are currently in, but not immediately
subordinate to it; that is, when one or more directory levels exist between the one
you are in and the object you want to address. The form of a relative pathname
is

*>LOWER-LEVEL_DIR>...>0OBJECTNAME

Here the asterisk (*) represents the part of the pathname that the file system
“remembers,” and when it is combined with the elements that you supply
explicitly, the result is an absolute pathname that leads from the root to the
object. The part of the pathname represented by the asterisk is called the home,
or working, directory pathname; the directory itself is the home, or working,
directory. If your home directory is BRANCHI1, the home directory pathname
represented by the asterisk is <FOREST>BEECH>BRANCH]1. The part of the
pathname that you supply after the asterisk to get to the file LEAF6 in directory
BRANCHS is >BRANCH8>LEAF®6, giving the following relative pathname:

*>BRANCH8>LEAF6
This, in tum, is interpreted by the file system as the absolute pathname:
<FOREST>BEECH>BRANCH1>BRANCHS8>LEAF6

Simple Pathname: When the object you want to address is immediately
contained in your home directory, you can use an even simpler form of
pathname, known as a simple pathname. A simple pathname consists of only
the name of the object you want to work with; it does not contain any > symbols.
Objectname, entryname, and simple filename are terms used synonymously with

Third Edition 3-3

Advanced Programmer’s Guide II: File System

34

Note

Note

Third Edition

simple pathname. If, as in the last example, your home directory is BRANCHI1,
and you want to do some operation on the directory BRANCHS, you can use the
simple pathname BRANCHS.

There is an exception to the interpretation of a simple name when you use the ATTACH
command. If, using the example above, you attempt to attach to BRANCHS by issuing
the command

ATTACH BRANCHS

the ATTACH command interprets BRANCHS as an unqualified, or full, pathname
(described below) rather than the simple pathname of the subordinate directory
BRANCHS. The result is that PRIMOS searches for a top-level directory of that name,
and in all likelihood will fail to find it. To attach to the lower-level directory
BRANCHS, you would use a relative pathname:

ATTACH *>BRANCHS

Unqualified Pathname: An unqualified pathname is one in which the first
element that you specify is a top-level directory. For example, an unqualified
pathname might be

BEECH>BRANCHI1>TWIG4

An unqualified pathname is a partial pathname which is completed when the
ATTACHS search rule finds the first element of the pathname. The file system
searches all of the active disk partitions that are visible to your system to find the
first occurrence of that first element. If your system is part of a common file
system name space or a part of a network, all visible disk partitions on all of the
active systems are searched. Local disks are searched first, in order of logical
disk number, and then remote disks are searched in the same manner. This can
take some time. (You can limit the scope of such a search, or change the order in
which disk partitions are searched, by modifying the ATTACHS search list.
Search lists are described in Chapter S, Search Rules.) The search ends when the
first top-level directory with the specified name is found. That top-level
directory, and any intervening lower—level directories specified in the pathname,
are then followed to the desired object.

With the advent of the common file system name space, the optimum setting of system
search rules to reduce search time becomes even more important: the disks that are used
most frequently by users on your system should head the search list. If you feel that your
system search rules could be more efficient, contact your System Administrator, or refer
to the System Administrator's Guide, Volume I: System Configuration.

J J

A

Accessing the PRIMOS File System

There are three points you must understand about a file system search using an
unqualified pathname:

e Once a top-level directory with the specified name is found on any disk,
the search terminates.

e If the desired object and all subsequent directories specified in the
pathname exist under that directory, PRIMOS performs whatever operation
you requested on the object.

e The implication of this file system search method is that, if you want to use
a full pathname and be sure of finding the object you want to operate on,
all of the objects named in the pathname must exist within the directory
that begins the pathname, and the directory that begins the pathname must
be unique in your name space (and on any other systems that may share a
network with your system).

How and When Objects Are Named

You assign a name to a file system object when you create it; how you create it
depends on the kind of object you are creating.

A text file such as a memo or a source program is normally created by using an
editor program, and is named by specifying a filename the first time you ask the
editor to store it. Different editors have different ways of doing this, documented
in their respective manuals and user’s guides; storage commands usually take the
form of a FILE, STORE, SAVE, or WRITE.

Application—related data files are usually created by a user program that executes
an open file subroutine. If it does not find the name of the file it is asked to
open, the subroutine creates the file and assigns the given name to it. The
subroutine call also contains information as to the type of file to be created, and
whether it is to be opened for input, output, or both.

File directories, lower—level directories, and access categories can be created
either by executing a subroutine in a user program or by using a PRIMOS
command at a terminal.

Segment directories are created by various application programs that manipulate
segmented files. User programs can call subroutines to create segment
directories.

Access Methods

PRIMOS provides three means of file access: the Sequential Access Method
(SAM), the Direct Access Method (DAM), and the Contiguous Access Method
(CAM). In these access methods, the file appears as a linear array of words
indexed by a current position pointer.

Third Edition 3-5

Advanced Programmer’s Guide II: File System

Access Control

3-6

Third Edition

A SAM file enables your program to read or write a number of halfwords
beginning at the pointer, which is advanced as the halfwords are read or written.
File system subroutines enable you to position the pointer anywhere within an
open file, and to read and write data sequentially from that point. File data can
be transferred anywhere in the addressing range. When a file is closed and
reopened, the pointer is automatically returned to the beginning of the file.

A DAM file also appears to be a linear array of halfwords. This method,
however, has faster access times in positioning operations, since PRIMOS keeps
an index to allow fast random positioning. Subroutine calls to manipulate SAM
and DAM files are identical.

A CAM file contains groups of 2048-byte records that are contiguous; that is,
the records in a CAM file are not fragmented across the disk. The groups of
contiguous records are called extents and are indexed by that file’s extent map
and it occupies the first record in the file. Within each extent, the records are
ordered sequentially. CAM files use fewer pointers than do DAM files, and
access time is much faster since the records are not fragmented. CAM files do,
however, require additional memory since one extent map resides in memory for
each open CAM file.

Two requirements must be met before your program can operate on a file system
object:

® Your program must be attached to the file directory that contains the
desired object, and, so that this can happen,

® Your program’s user must have at least Use access to that directory

Attaching to a File Directory

You can attach your program to the directory containing the desired object in one
of two ways:

e Explicitly, if you invoke the ATTACH command specifying the pathname
of the file directory before you invoke your program

e Implicitly, if you do not explicitly attach to the file directory, but supply
any form of pathname other than a simple objectname when you invoke
your program

When you explicitly attach to a file directory by using the ATTACH command,
that directory becomes your home directory. You can then invoke your programs

J) J

J

J

Y)

Accessing the PRIMOS File System

using simple objectnames as arguments; your programs will locate their target
objects provided they are immediately contained in that directory.

For example, if you write a program called COUNT to count the number of lines
in a text file, and install it in the directory MYDIR.MEMOS, one way you can
invoke it is

ATTACH MYDIR.MEMOS
RESUME COUNT CHARITY

Since the COUNT program was invoked with the simple objectname CHARITY
as its argument, COUNT looks in the home directory MY DIR. MEMOS,
established by the ATTACH command, for the file CHARITY.

You do not always need to attach explicitly to a file directory before invoking
your programs; they can still operate on objects outside the home directory if
you supply the object’s relative, full, or absolute pathname rather than its simple
name. Taking the COUNT program again as an example, and still assuming the
same home directory, you could invoke it in the following way:

RESUME COUNT INIT_DIR>LOGIN.CPL

For this invocation, COUNT has to go to a directory INIT_DIR, outside the
home directory, to locate the file LOGIN.CPL. To do this, it attaches
temporarily to the outside directory by means of a current attach point; the
target directory is called the current directory.

If you want to enable your programs to operate in both of the ways shown in
these examples, you must use the SRSFX$ subroutine, which is capable of
searching for objects outside as well as within the home directory. The SRCH$$
subroutine can search only in the home directory; if you use it in a program, and
the target object is outside your home directory, you must attach to the directory
containing the object before invoking the program, as in the first example.

The intent of the current attach point is that the attachment is in effect only for
the duration of the program’s execution. When the program terminates, the
attach point should revert to the home directory. This is especially important if
the program does not terminate normally; in order to provide a consistent result
in cases of abnormal termination, most Prime software resets the current attach
point to the home directory whether it terminates normally or abnormally.

Attach points and the subroutines that manipulate them are described in more
detail in Chapter 6, Attach Points.

Access Control Lists

As stated earlier, users must have access to all directory levels leading to the
objects they are working on, as well as to the objects themselves. The means by

Third Edition 3-7

Advanced Programmer’s Guide II: File System

3-8

Third Edition

which you as a programmer are given access, and by which you can control
access, to the various directories and files involved in your daily work are clearly
explained in the PRIMOS User’s Guide. As a programmer of utilities and
applications for other users, however, you need to be aware of the kinds of things
your programs can and should do to enable those users to control access to the
objects these programs create and use.

PRIMOS provides a set of subroutines that you can write into your programs to
enable them to manipulate access control lists (ACLs) in precisely the same way
as you can by issuing ACL~related commands at your terminal. For example, if
you write a program that constructs a database for a group of users, it is
particularly useful for that program to be able to establish a database ACL for
that group of users at the time the database is created. Or, consider a utility
program that creates new files at various times, all of which should be identically
protected. Using subroutine calls, this program can create an access category to
which each new file is linked when it is created.

An access category, while it takes more disk space than a single access control
list (about as much as two average ACLs), saves disk space when the same ACL
is to protect more than two objects; this is because any number of objects can be
linked to the access category once it is created. Your program can make these
links when it creates its files, after it checks to see whether the access category
already exists.

You can use an access category to synchronize the access to multiple objects
when rights are added or removed from the access category’s ACL: whenever a
new right is added or an old right is removed, the change applies to all objects
protected by the access category, removing the need to update each object’s ACL
individually.

The access rights that you can assign to your own file system objects (using
PRIMOS commands) and that your programs can assign to their objects (using
access control subroutines) are all fully described in the PRIMOS User’s Guide.
You can specify ALL to include OPDALURWX. (If some future rev. of
PRIMOS supports new access rights, you will not get them automatically when
you read in your file that has been assigned ALL. You will have to reassign
ALL or add the new rights individually.)

Access control subroutines can deal with both individual users and groups of
users. Your System or Project Administrator can define a user group (whose
groupname begins with a period, such as .DBUSER) consisting of the user
identifications of all of the users of a particular utility or application program.
Your programs can use the access control subroutines to grant or deny access to
these groups as well as to individuals.

Password Directory

In an older form of file access control, PRIMOS allows a limited set of access
rights to be specified on a per—file basis. A file directory can be given an owner

) J

) J

)

)

Accessing the PRIMOS File System

password and a non—owner password and a set of rights for each: R (read), W
(write), and D (delete). This form of protection is giving way to the more
comprehensive ACL mechanism, and will not be further described in this book.
Details can be found in the PRIMOS User’s Guide, as can procedures by which
you can convert the older form to the ACL form.

How and When Access Is Calculated

In most situations, users need not be concerned about when access is actually
calculated by PRIMOS. However, there are some subtleties of the ACL
mechanism that the advanced user should be aware of. This section discusses

e Access calculation concepts
e Access calculation when opening files
e Access calculation when attaching to directories

e Access calculation for other operations

Access Calculation Concepts

For a given file system operation, there are two times that relate directly to the
ACL mechanism:

o When access is read

o When access is used

For the most part, reading and using occur at the same time. A sample case is
the deletion of a file. When you delete a file, PRIMOS first reads the access for
that file, and then it uses that access to determine whether or not you may delete
the file.

When you attach to a directory, however, the access is read once. It is then used
immediately to determine whether or not you may attach to the directory. If you
are allowed to attach, PRIMOS remembers the access it read for the directory.
Subsequent operations within and upon that directory may reuse the access that
PRIMOS read when you first attached. Therefore, if you attach to a directory,
and then change the access for that directory, you will find that for certain
operations the access change has not taken effect. The access information read
for a home or current directory is not discarded until you attach away from the
directory.

The following example illustrates an effect of this behavior.

Third Edition 3-9

Advanced Programmer’s Guide Il: File System

OK, ATTACH COGENT

OK, CREATE SENOR

OK, ATTACH COGENT>SENOR
OK, LIST ACCESS

“<Current directory>” protected by default ACL (from ”<X1>COGENT”) :
COGENT : ALL
$REST: LUR

OK, LIST ACCESS COGENT>SENOR

“COGENT>SENOR” protected by default ACL (from "“<X1>COGENT") :
COGENT: ALL
SREST: LUR

oK, LD

<X1>COGENT>SENOR (ALL access)
1 record in this directory, 1 total record out of quota of 0.

No entries selected.

OK, SET ACCESS COGENT>SENOR COGENT:U -NO QUERY
OK, LIST ACCESS

ACL protecting “<Current directory>”:
COGENT: ALL
SREST: LUR

OK, LIST ACCESS COGENT>SENOR

ACL protecting “COGENT>SENOR”:
COGENT: U
SREST: NONE

OK, LD

<X1>COGENT>SENOR (ALL access)
1 record in this directory, 1 total record out of quota of 0.

No entries selected.

OK, ATTACH COGENT>SENOR

OK, LD
Insufficient access rights. (current directory) (1d)
ER!

In this example, LIST_ACCESS commands are invoked at different times to
illustrate the difference between the home directory and the same directory when
referenced explicitly by pathname. In the first two invocations, LIST_ACCESS
reports the same access when the directory is referenced as the home directory
and when it is referenced by pathname.

3-10 Third Edition

J

J

J

YD

)

Accessing the PRIMOS File System

Then, without changing the home attach point, you set the access to the home
directory so that you have only Use access. Among other things, this removes
List access from the ACL on the SENOR directory.

At this point, the third LIST_ACCESS command on the home directory shows
that you still have ALL access to SENOR. A fourth LIST_ACCESS command
on the same directory (using the pathname) reports that you have only Use
access. This discrepancy is illustrated further by the fact that you can still type
LD and see the directory contents (or lack thereof).

However, when you reestablish SENOR as the home attach point, PRIMOS
reads the new ACL for this directory. This results in your having only Use
access to the home directory, which prevents you from examining the directory
contents using LD. It is when you attach again to the lower-level directory that
the new ACL takes effect.

Similarly, the new ACL takes effect for any other users that attach to the
directory, but not for users who were already attached to the directory when the
ACL on it was reset.

Access Calculation When Opening Files

When opening a file or segment directory, the access is read and used when the
open operation first takes place. The access is not used again during read or
write operations. The access is used if a change—access operation is performed
(by using the SRCH$$ subroutine with the K$CACC key). However, the access
is not read again in this case. Therefore, once a file is open on a file unit,
changing the access of the file does not affect any operations performed on that
file unit up until the time that file unit is closed. (See the File Units section,
following, for an explanation of file units.)

Access Calculation When Attaching to Directories

When you attach to a directory, as either a home or a current directory, PRIMOS
reads and uses the access on the directory during the attach operation.
Subsequent operations on the home or current directory use the access without
reading it again, as illustrated earlier. However, subsequent operations on the
same directory when the name of the directory is specified causes PRIMOS to
read the access for the directory to check the access rights for those operations.
Once PRIMOS has read the access for the directory, it does not update any
access it has already read for the origin, home, or current directories.

The following example illustrates these points.

Third Edition 3-11

Advanced Programmer’s Guide Il: File System

OK, ATTACH COGENT

OK, CREATE SENOR

OK, ATTACH COGENT>SENOR
OK, ED

INPUT

A TEST FILE.

EDIT

FILE TEST FILE
OK, LIST ACCESS TEST FILE

“TEST FILE” protected by default ACL (from ”<X1>COGENT”) :
COGENT: ALL
SREST: LUR

OK, SET ACCESS COGENT>SENOR COGENT :ALURW

OK, LIST ACCESS TEST FILE

“TEST_FILE” protected by default ACL (from “<X1>COGENT”) :
COGENT: ALL
SREST: LUR

OK, LIST ACCESS COGENT>SENOR>TEST FILE

”COGENT>SENOR>TEST FILE” protected by default ACL
(from ”“<X1>COGENT>SENOR") :
COGENT: ALURW
SREST: NONE
OK, DELETE COGENT>SENOR>TEST FILE
Insufficient access rights. Unable to delete “COGENT>SENOR>TEST FILE”

(delete)
OK, DELETE TEST FILE
OK,

Here, an attempt to delete a file by pathname fails because the access on its
parent directory denies Delete access to the user. However, because the user was
attached to the parent directory before the access was changed to deny Delete
access, deleting the file as a member of the home directory succeeds.

Access Calculation for Other Operations

Aside from opening files and attaching to directories, most file system operations
cause PRIMOS either to use the access for the current directory or to read and
use the access for the appropriate file system object just once. For example,
renaming a file causes PRIMOS to use the access for the current directory and
make certain that both Delete and Add rights are granted.

3-12 Third Edition

J J

3

File Units

Accessing the PRIMOS File System

A file unit is an open channel to a file, a segment directory, or a file directory.
Through this channel, your programs read data from and write data to a file
system object. Associated with a file unit is a file unit number, that is, a
numeric pseudonym for the object’s name. This number is assigned either by the
program (static allocation) or by PRIMOS (dynamic allocation) when the
program opens the file (see File Unit Number Allocation, later in this section). It
uniquely identifies the file unit for a particular process (user).

Generally speaking, your program performs the following operations to operate
on a file system object:

1. Opens the file: establishes an open file unit and assigns a file unit number.
2. Accesses the file: the open file unit enables operations on the file.

3. Closes the file: revokes access to the file.

Information Associated With a File Unit

As described previously, a file unit identifies an open file system object.
Internally, PRIMOS maintains information on each open file unit.

Current Object Position: The current object position points to the
location in the file system object at which the next data read or write begins. For
files, the position points to a particular halfword in the file. For segment and file
directories, the position points to a particular entry in the directory.

The current object position is adjusted automatically by PRIMOS as data is read
from or written to an object. In addition, your program may change the current
object position without reading or writing data by using the PRWF$$ subroutine,
described in Chapter 7, Text Storage and Retrieval.

For files, the current object position is always between 0 and the end—location of
the file, or end of file, inclusive. The end—of-file location is the same value as
the number of halfwords in the file; when a file is first created, the end—of-file
location is 0.

To append new data to the end of an existing file, first position the file unit to the
end—of-file location, which represents the position of the next halfword to be
appended to the file. (If you do not know the end—of—file location, simply
position to the largest possible halfword number, 2147483647. Although
PRIMOS returns an error code of ESEOF to indicate that the end of file has been
reached, PRIMOS sets the current object position to the end—of-file location.)

At the end—of-file position, writing data to the file automatically extends the file
as the data is written; an attempt to read data at this point retumns the error code
ES$EOF (end of file).

Third Edition 3-13

Advanced Programmer’s Guide II: File System

3-14 Third Edition

Open Mode: The open mode determines what operations are valid for an
open file unit. A read operation requires the file unit to be open for reading; a
write operation requires the file unit to be open for writing; both operations are
valid if the file unit is open for both reading and writing. Your program sets the
open mode when it first opens a file. Your program can open a file for reading,
for writing, or for both reading and writing. To do this, the user running your
program must have the corresponding access to the target object. For files and
segment directories, the required access is Read, Write, or both Read and Write,
to match the actions for which they are opened; for file directories, which are
open only for reading, List access is required.

A special open mode, known as virtual memory file access read (VMFA-read),
also exists. The PRIMOS executable program format (EPF) mechanism uses
VMFA-read to map an EPF into virtual memory from the disk. A file unit open
for VMFA-read cannot be read or written by a program.

When your program tries to open a file unit to an object for a specific action such
as writing, another file unit may already be open to that object for the same
purpose. In such cases, PRIMOS checks the open mode requested by your
program against the read/write lock then in effect for the object. Your program’s
open request is rejected if the lock specifies that only one user at a time can do
what the open request intends to do, and

¢ Another user is already using the object for that purpose, or

® Your program has already opened the object on another file unit for the
same purpose.

See the section entitled The Read/Write Lock Attribute, later in this chapter for
the meanings of the possible values for the lock.

Your program can change the open mode of a file if the new open mode does not
conflict with the access or read/write lock controls described above. The
CHS$MOD subroutine, described in Subroutines Reference II: File System,
performs this function.

Object Type: The type of the object open on a file unit determines what kinds
of operations are valid on that file unit. Object types include

e SAM, DAM, and CAM files, for which most operations (except directory
operations) are valid, such as data read and data write

e SAM and DAM segment directories, for which only segment directory
operations are valid, such as position to segment directory member and
delete segment directory member

e File directories, for which only file directory operations are valid, such as
read next directory entry and read named directory entry

J J

)

Accessing the PRIMOS File System

Access categories cannot be opencd on a file unit; they are restricted in size, so
they are read and written in single operations and do not require an associated
file unit.

If your program attempts an operation that conflicts with the object type,
PRIMOS returns one of several error codes:

e ES$DIRE (Operation illegal on directory), indicating an attempt to perform
an operation valid only for SAM or DAM files on a segment or file
directory

e ESNTSD (Not a segment directory), indicating an attempt to perform an
operation valid only for segment directories on a file or file directory

e ESNTUD (Not a top-level directory), indicating an attempt to perform an
operation valid only for file directories on a file or on a segment directory

Because these object types are all opened in the same way, these errors are
returned only when your program attempts to perform the invalid operation,
typically after opening the object. To enable your program to detect an
inappropriate object type earlier, have it check the type value returned by the
subroutine it calls to open the object. If the type value is not appropriate to the
intended operations, your program should close the file unit and report an error.

Object Modified: An object-modified flag is initially reset when a file unit is
first opened (before the object is modified). When the first data write is
performed on the object, this flag is set (after the object has been modified).

When the file unit is later closed, PRIMOS uses the object-modified flag to
determine whether the date and time last modified (dtm) field for the object
should be updated. If the flag is not set, PRIMOS does not update the dtm field.
Therefore, simply opening a file for writing and then closing the file does not
cause the dtm field to be updated. (The date and time last accessed field is set
under this and other circumstances described later in this chapter.) A program
must actually write data to the file and then close the file to update the dim field.

Disk Shut Down: A disk-shut—down flag is initially reset (meaning the disk
is not shut down) when a file unit is first opened. If a disk partition is shut down
by the System Administrator or System Operator (by using the SHUTDN
command), the disk-shut—down flags for all file units open to objects on that
disk are set (meaning the disk is shut down). After that, any attempt by a
program or user to continue performing operations on an affected file unit is
rejected with the error code E$SHDN (disk has been shut down).

Calculated Access to Object: When your program opens an object,
PRIMOS calculates the user’s access to the file to make sure that the user can
operate on the file. PRIMOS records the resulting summary of the user’s access
to the file in the information for the corresponding file unit. A later attempt by
your program to change the open mode of the file is checked against this copy of
the user’s access, not against the current access on the object itself (which may
have changed since the file unit was opened).

Third Edition 3-15

Advanced Programmer’s Guide II: File System

Opening a File

3-16

Third Edition

Read/Write Lock: PRIMOS records the read/write lock of an open file unit
in the information for that file unit so that it can quickly determine whether
record-level locking for writes is necessary. If at least two file units are open to
the same object for writing, or one is open for reading and another is open for
writing, PRIMOS must ensure that simultaneous operations on those file units
result in predictable behavior. Because such a situation is permissible only when
the read/write lock is set to an appropriate value, PRIMOS checks the read/write
lock for the file unit to determine how careful it must be in guarding against
simultaneous access during a read or write. The more permissive the read/write
lock setting, the more care PRIMOS has to take, and the lower the performance
of each read or write operation will be.

Your program may open a file for reading only, for writing only, for both reading
and writing, or for VMFA-read (EPFs only). If your program opens a file for
reading only, your program can read the file, but cannot change the file. If your
program opens a file for writing only, your program can write the file, but cannot
read the file.

To open a file, your program calls one of many system subroutines, described in
Chapter 7, Text Storage and Retrieval, and Chapter 8, Data Storage and
Retrieval. Each subroutine provides different functionality for opening a file, but
they all provide the following services.

e Search the specified file directory (if a pathname is specified) or the
current directory (if a simple objectname is specified) to see whether the
requested filename is there.

¢ Create the file if the filename is not present and your program is opening
the file for writing or for both reading and writing. If the filename is not
present, and your program is opening the file for reading only, these
subroutines retumn a ““not found” indicator.

¢ Determine a file unit number. The file unit number is the only identifier
PRIMOS uses for transferring data to and from the file.

¢ Set up tables and initialize buffers in the operating system.

If your program opens a file for writing only, or for reading and writing, your
program may change that file. If the system subroutine creates a new file at the
time of opening, no information is contained in the file.

Because open—for—write files are subject to alteration (deliberate or accidental),
your program should keep files closed except when they are being used. Open
files absorb system resources; they may also be unavailable to other users.
However, frequent open and close operations also absorb system resources;

) I

A

Accessing the PRIMOS File System

therefore, try to balance your program’s use of files so that open and close
operations are infrequent without resulting in file units being open but inactive
for long periods of time.

When the user is communicating with the file structure through one of the
standard Prime translator or utility programs, files are referred to by name only.
PRIMOS, or your program, handles the details of opening or closing files and
assigning file units. For example, the user can enter an external command such
as ED FILE1, which loads and starts the text editor and takes care of the details
of assigning the file FILE1 to an available unit for reading or writing.

File Unit Number Allocation
PRIMOS allows two ways of allocating file unit numbers:

e Dynamic allocation

e Static allocation

Dynamic allocation allows a program to leave to PRIMOS the task of selecting
an available file unit number. When opening a file, a program specifies dynamic
file unit allocation, and PRIMOS retums to the program the file unit number it
has assigned to the open file. The program then uses this file unit number when
reading or writing the file.

Static allocation is performed by a program. When opening a file, a program
passes the file unit number to PRIMOS. If the specified file unit is already in
use, PRIMOS rejects the attempt to reuse the file unit; otherwise, PRIMOS uses
the program—defined file unit number to read or write the file.

Dynamic allocation is the recommended method for most programs. Its
advantages are as follows:
® You do not have to worry about different parts of your program having

conflicting file unit number requirements.

¢ Your program can call another program that also uses dynamic unit
allocation without causing file unit number conflicts.

e A very large number of file units (32761) are available when using
dynamic allocation, whereas static allocation allows a maximum of 126 file
units open simultaneously for a given user.

¢ Your program is guaranteed exclusive use of file units.

Static allocation offers very few advantages; these rarely outweigh any of the
advantages of dynamic allocation:

Third Edition 3—-17

Advanced Programmer’s Guide II: File System

3-18 Third Edition

¢ You can design several programs that are to run together as a package so
that they use agreed—upon statically allocated file unit numbers; thus, these
programs do not have to pass dynamically allocated file unit numbers back
and forth to each other.

® Your program can use a numerical constant as the file unit number, rather
than requiring the use of a variable.

* Prime translators do treat certain file unit numbers specially (when enabled
using the ~ALLOW_PRECONNECTION option), so your program may
use these file unit numbers if it invokes Prime translators.

File Unit Numbers

File unit numbers 1 through 127 may be specified for static allocation by your
program. File units 127 through 32761 are returned by PRIMOS only when
your program requests dynamic unit allocation. Your program cannot specify a
file unit number between 128 and 32761 (inclusive) when opening a file system
object.

Unit —4 is the command output file unit. Your program should not read data
from or write data to this file unit. Your program may read the current object
position of this file unit, or use GPATHS to obtain the full pathname of the
command output file.

Unit —1 is the current directory; unit -2 is the home directory; unit -3 is the
origin directory. These three units are usually open to the corresponding
directories. You may use this knowledge to perform certain operations
efficiently. For example, to read the directory entries in the user’s origin
directory, your program can simply call DIR$RD using the K$INIT key the first
time for file unit -3. It does not have to attach to the origin directory (thus
preserving the current attach point) or to open the origin directory for reading
(thus saving time and a file unit).

File Pointers

Once your program has opened a file, a file pointer is associated with the file
unit. To understand how the file pointer works, imagine that the halfwords in a
file are serially numbered beginning at halfword number 0. The file pointer is
the number of the next halfword to be processed in a file. It identifies the point at
which data are read from and written to the file. As your program reads and
writes halfwords, the associated file pointer is incremented once for each
halfword read or written. If your program reads a line of text, for example, the
file pointer is positioned, after the read, to the beginning of the next line of text
in the file.

J

A

r

h)

Closing Files

Accessing the PRIMOS File System

Positioning Files

Your program can move the file pointer backward and forward within a file
without moving any data. This is called positioning a file, and is described in
more detail in Chapter 7, Text Storage and Retrieval. The value of a file pointer
is called the position of the file. Positioning a file to its beginning is often
called rewinding a file.

Truncating Files

Your program can shorten a file by truncating it. When your program truncates
a file, the part of the file that is located at or beyond the file pointer is eliminated
from the file, and an end—of-file mark is placed at the pointer position. If the file
pointer is positioned at the beginning of the file, all of the information in the file
is removed, but the filename remains in the file directory. If the file pointer is
positioned at the end of the file, the truncation has no effect.

PRIMOS handles the retuming of disk space occupied by truncated records to
the free record pool on the disk.

Many programs truncate a text file just before closing it if they have written new
information to the file. Because text files are typically variable-length record
files, as described in Chapter 7, Text Storage and Retrieval, they are usually
written from beginning to end; even if only one line in a file is changed, the
entire file is rewritten in case the new line is longer or shorter than the line it
replaces. In the process of rewriting an entire file, a program may write a new
version that is shorter than the old version. Truncating the file ensures that old
data is not left at the end of the new file.

Your program should always close a file before terminating execution, whether
termination is normal or abnormal. Closing files is described in more detail in
Chapters 7, Text Storage and Retrieval and 8, Data Storage and Retrieval.

Closing on Normal Program Termination

Your program may close a file unit, also referred to as closing a file, when it
finishes its processing of the file. When your program does this, the file unit
number and the corresponding table areas in the operating system are ‘‘cleaned
up” and released for reuse by another program or user.

Third Edition 3-19

Advanced Programmer’s Guide lI: File System

File Attributes

3-20 Third Edition

Closing on Abnormal Program Termination

When control returns to PRIMOS by way of an error condition, files are not
normally closed. To provide this functionality in your program, have your
program close any file units it opened when it detects a fatal error. (Of course,
your program should still report the original error; be careful to separate error
code variables used to clean up after an error from error code variables used to
detect original errors.)

You may also choose to have your program make an on—unit for many error
conditions, as described in the Subroutines Reference 111: Operating System. If
one of these conditions occurs while your program is running, your program can
close any file units it has opened and then continue to signal the error condition.
Typically, this is done for the QUITS$ condition, signaled when the user types
CONTROL-P or BREAK.

Note, however, that although closing file units upon recognition of the QUIT$
condition has advantages, a distinct disadvantage is that the user cannot restart
your program by issuing the START command. If the user attempts this, the
program continues executing where it was stopped until it attempts to use one of
the closed file units. At this point, an error indicator is returned to the program.

PRIMOS maintains a set of file attributes for every file, segment directory, file
directory, and access category on disk. The file attributes of a file system object
can be read and written by a user program that has sufficient access to the parent
directory of the target object. File system attributes include

The date and time the object was created

The date and time the object was last accessed

The date and time the object was last modified

The date and time the object was last backed up

The read/write lock of the object

The file type (which once established can only be read)
The dumped/not dumped state of the object

The special/not special state of the object (which is set at disk initialization
and can only be read)

) J

)

)

Accessing the PRIMOS File System

Note The date and time created (dtc) and date and time last accessed (dta) attributes may
appear in directory entries beginning at PRIMOS Rev. 20.0. These expanded entries are
accessed through the use of a hash table. At Rev. 20.0, MAKE creates all directories as
hashed ACL directories unless an option is specified that creates a pre-Rev. 20.0 disk. A
Rev. 20.0 system can use pre-Rev. 20.0 disks, as can a pre-Rev. 20.0 system. A system
running pre-Rev. 20.0 PRIMOS can not use local Rev. 20.0 disks, but it can use remote

Rev. 20.0 disks.

The Date and Time Last Accessed (DTA) Attribute

The date and time last accessed (dta) attribute of a system object or its parent is
modified under various circumstances as depicted below.

Table 3-1.
Object DTA Parent DTA
Modified? Modified?
Close an open entry (from read or write) Y N
Segment directory subfile N Y
After read from write—protected disk N N
Write attribute
dump N N
dtm N N
dtb N N
dc* N Y
dta* N N
other (delete switch, protection, rwlock, logical type, N Y
truncated bit)
Read any attribute N Y
Tape backup (MAGSAV) Y N
Tape restore (MAGRST - Set to time of restore) Y N
Size N Y
Remote size N Y
Pre-Rev. 20.0 system operating on Rev. 20.0 hashed directory Y N
Remote backup (MAGSAV) Y N

Third Edition 3-21

Advanced Programmer’s Guide II: File System

Table 3—1. (continueq)

Object DTA ~Parent DIA

Modified? Modified?
Pre-Rev. 20.0 system operating on Rev. 20.0 hashed directory N N
Pre-Rev. 20.0 system operating on Rev. 20.0 hashed directory N N

Note

dcl 1

3-22 Third Edition

* dta and dtc can be set only by members of the user group named .BACKUPS. Backups
performed by members of this group are recorded in the date and time last backed up
(dtb) attribute.

Format of the Date and Time Last Accessed Attribute: The format of
the dta attribute of a file system object is declared in PL/I as follows:

dta,
2 date,

3 year bit(7), /* Starting in year 1900. */

3 month bit(4), /* January is month 1. */

3 day bit(5), /* The first day of the month is day 1. */
2 time fixed bin(15):; /* (Seconds since midnight)/4. */

As shown in this declaration, the dta attribute occupies one fullword, or two
halfwords. The first halfword is organized as follows:

YYYYYYYMMMMDDDDD

Here, YYYYYYY is the year minus 1900, MMMM is the month (January is month
1), and DDDDD is the day of the month.

The second halfword is the number of seconds past midnight divided by four.
The remainder portion of the result of the division is discarded. Therefore, the
granularity of the dta field is four seconds.

The Date and Time Created (DTC) Attribute

The date and time created (dtc) attribute contains the date and time that a file
system object was created.

Format of the Date and Time Created Attribute: The format of the dic
attribute of a file system object is the same as that for the date and time last
accessed attribute.

J I

M)

A

Accessing the PRIMOS File System

The Date and Time Last Modified (DTM) Attribute

Whenever a change occurs in the file system data or structure, the date and time
last modified (dtm) attribute of the file system object involved is set to the
current date and time. User programs may use the dtm attribute of file system
objects to determine when the objects were most recently modified.

User programs may also change the dtm attribute of a file system object to any
date and time.

How PRIMOS Sets the Date and Time Last Modified Attribute: The
dtm attribute of a file system object is set depending upon the object type, as
shown below.

Type DTM Attribute Set

File When the file is first created, and whenever the file
is closed after data in the file has been modified or
after the file has been truncated. (The dtm attribute
of a file is not changed when any other attributes of
the file are changed.)

Segment directory When the segment directory is first created, and
after the segment directory is closed when any of its
members have been created, deleted, modified,
truncated, or renamed, or when its size is changed.

File directory When the directory is first created, when one of its
members is created, deleted, or renamed, or when
certain attributes of one of its members are changed
by a user program. Changes to all attributes except
the dumped bit, the date and time last modified, and
the date and time last backed up cause the updating
of a parent directory’s dtm field. The parent
directory’s dtm field is also updated when the access
control for one of its members is changed.

Access category When the access category is first created, or when
its contents are changed. Changing the contents of
an access category does not, however, update the
date and time last modified field of any objects
protected by that access category.

The purpose of the dtm attribute is to record the change of any file system data
or structure somewhere in the file system itself. Thus, creating a new file sets
the dtm attribute for both the file and its parent directory. Subsequently deleting
the file also updates the dtm attribute for its parent directory. Although the net
result may be that the contents of the directory are unchanged, the recent dtm
attribute of the parent directory is an indicator that activity has taken place
within the directory.

Third Edition 3-23

Advanced Programmer’s Guide /l: File System

3-24

Third Edition

Format of the Date and Time Last Modified Attribute: The format of
the dtm attribute of a file system object is the same as that for the date and time
last accessed attribute.

The Date and Time Last Backed Up (DTB) Attribute

The date and time last backed up (dtb) attribute contains the date and time that a
file system object was last backed up by a member of the BACKUPS$ group.

Format of the Date and Time Last Backed Up Attribute: The format
of the dtb attribute of a file system object is the same as that for the date and time
last accessed attribute.

The Read/Write Lock Attribute

One of the responsibilities of the PRIMOS file system is to ensure against
attempts by several user processes to read and write one file simultaneously. For
example, if user FRED opens a file for reading and writing, user BARNEY is
unable to open the file until user FRED has closed it.

Some applications require this restriction to be lifted. For example, an
application might require several users to have a file open for writing at the same
time. The PRIMOS file system allows this to be specified via a read/write lock
attribute.

The Nature of the Read/Write Lock Attribute: Every segment directory
and file has a read/write lock attribute. File directories and access categories do
not have them, since PRIMOS is entirely responsible for synchronizing updates
to these objects.

A file is protected against concurrent access by its read/write lock. The
read/write lock attribute for a file is checked every time a user opens the file for
reading, writing, or both reading and writing. In addition, a check is made to see
if the file is already open for reading and/or writing. Depending on the results of
these two checks, the attempt to open the file may be rejected with the error code
E$FIUS (File in use).

Even if only one user is accessing a file, that user may receive a file-in—use error
if he or she attempts to open the file twice. PRIMOS does not distinguish
between two different processes attempting to open a file and one process
attempting to open a file on different file units. For example, if a user attempts
to open one file for writing on two different file units, the second attempt to open
the file may fail.

Segment Directories and the Read/Write Attribute: The read/write
lock attribute for a segment directory affects not only the segment directory
itself, but also serves as the read/write lock for all of its members since segment
directory members have no attributes of their own (except for file type).

) J

“N

N

ENEN

Accessing the PRIMOS File System

However, PRIMOS still distinguishes between the segment directory and each of
its members when it is called upon to open the directory or its members.
Therefore, two users may have two different files within one segment directory
open for writing at the same time, whereas an attempt by a user to open a
segment directory member file that is already open may meet with failure.

The Format of the Read/Write Lock Attribute: The format of a
read/write lock attribute is as follows:

dcl rwlock bit(2);

The four possible values for a read/write lock attribute are detailed in Table 3-2.

Table 3—2. Values for a Read/Write Attribute

Value Keyword Meaning

0 SYS Use the system—wide default. The system default is set via the
RWLOCK configuration directive, which is described in the System
Administrator’'s Guide, Volume I: System Configuration. Normally,
the default is 1, corresponding to a file read/write lock of 1, or EXCL
(described below).

However, the system-wide read/write lock may be 0, meaning only 1
reader or 1 writer may have a file open at a time. The other possible
value for a system—wide read/write lock is 3, corresponding to a file
read/write lock of 2, or UPDT (described below).

1 EXCL Exclusive control; n readers or 1 writer, This allows multiple pro-
cesses to read a single file at a time, unless the file is being written.
If the file is being written, no other user may open the file.

2 UPDT Update control; n readers and 1 writer. This allows multiple processes
to read a single file at a time even while it is being written by one
process. It still prevents more than one process from writing to the
same file at the same time. This setting is useful for command output
(COMOUTPUT) files, for example.

3 NONE No control; n readers and m writers. This provides no locking on a
file at all. Using this setting is not recommended, as it decreases the
performance of the file system, and can result in damage to your
files.

The File Type Attribute

Every object in the PRIMOS file system has a file type. File types include the
following:

Third Edition 3-25

Advanced Programmer’s Guide ll: File System

3-26 Third Edition

¢ Sequential access method file (SAM)

e Direct access method file (DAM)

e Sequential access segment directory (SEGSAM)
® Access category (ACAT)

e Contiguous access method file (CAM)

The file type of an object is determined only when the object is created. It
cannot be changed afterwards without deleting and recreating the object.

The file type of an object can be read by a user program along with other file
system attributes. The file type attribute is declared as follows:

dcl type bit (8):

The seven possible values, and their corresponding keywords, are

Keyword Value

SAM 0

DAM 1

SEGSAM 2

SEGDAM 3

Directory 4

ACAT 6

CAM 7 (ROAM files only)

Notice that file type value S is not defined. A value of 5, and any other
undefined value, should be treated as an unrecognized file type. Prime reserves
the right to use any or all of these undefined values.

The Dumped/Not—dumped Attribute

For backup service, the file system provides a dumped bit for all file system
objects except access categories. The file system resets this bit whenever the
corresponding object is modified. A backup utility can read the dumped bit to
determine whether to make a backup copy of the object. If the dumped bit is
reset, the utility can then make a backup copy, and set the dumped bit on for the
object.

The dumped bit for a file system object is reset (turned off) whenever the date
and time last modified attribute for the object is updated. Similarly, if a file is

) J

A

r

Quotas

Accessing the PRIMOS File System

deleted or renamed, the dumped bit of the parent directory is reset when the dtm
attribute of the parent directory is updated.

Dumped Bits for Directories: When a file is modified, the resetting of
dumped bits is not performed on all of the directories that intervene between the
file and the MFD. Therefore, a backup program must walk through the entire
contents of a directory, sensing the dumped bits for all of its members, before
deciding that no recent modifications have been made to its members.

Dumped Bits for Segment Directorles: File attributes exist only for
members of file directories. Therefore, when a file within a segment directory is
modified, the resetting of the dumped bit occurs on the parent segment directory,
and not on the file, because the parent directory is a member of a file directory,
and the individual files are not.

Therefore, only the top-level segment directory dumped bit need be tested to
determine whether the contents of the segment directory have changed.

A corollary is that if the dumped bit for a segment directory is reset, the entire
segment directory must be backed up, even if only one member of the segment
directory has been modified.

The Special/Not-special Attribute

User programs that read directory entries may find the special bit useful.
PRIMOS sets this bit on for all of the special files when it creates a new disk
partition. Special files include the MFD, the BOOT file, the BADSPT file (if it
exists), and the record allocation table for the disk partition (which has the name
of the disk partition as its objectname).

PRIMOS does not allow user programs to change the special bit for a file system
object, nor does it allow objects with the special bit set to 1 to be deleted.

Special files exist only in the MFD for a disk partition.

PRIMOS allows you to set quotas on your directories and lower-level directories
under certain conditions. Your programs can also make use of quota
manipulation subroutines to do this. Quotas are expressed in terms of numbers
of physical disk records, and must be assigned carefully if they are to be
meaningful and useful.

Detailed explanations of quotas and their settings can be found in the System
Administrator’s Guide, Volume I: System Configuration, and in the PRIMOS
User’s Guide. Subroutines related to quotas are described in Chapter 11, Disk
Quotas, and in Subroutines Reference Ii: File System.

Third Edition 3-27

M

Programmer Interfaces to the
File System

Chapter 2, The PRIMOS File System, introduced you to the concepts of the file
system you need to know in writing programs that deal with files, access
’- categories, and the various kinds of directories that the file system supports.

This chapter explains the file system interfaces that you as a programmer can use
to communicate with the file system, what these interfaces allow you to do, and
the principles involved in using them.

Communicating With the File System

r As a programmer using PRIMOS programming tools like editors, compilers, and
linkers, you have at your disposal a number of procedures by which you can
communicate with the file system. From your terminal you can use commands
to attach to directories, set access to file system objects, and create, open, close,
and delete file system objects. These commands invoke PRIMOS programs that
in turn call subroutines that perform the requested functions. Some PRIMOS
programs invoke command functions, which in turn invoke subroutines to do
their tasks.

Commands

Commands constitute the highest-level programmer interface to the PRIMOS
operating system. This is the interface that you use to request the execution of
PRIMOS programs stored in the standard command directory CMDNCO, and to
execute any application program you have developed and installed in this
directory. Descriptions of all PRIMOS commands are given in the PRIMOS
Commands Reference Guide. You or someone in your organization should
provide information on the execution of your application programs.

You can also request the execution of a program stored in a directory other than
CMDNCO by invoking the RESUME command, supplying the pathname of the
program as an argument.

(. Third Edition ~ 4-1

Advanced Programmer’s Guide II: File System

4-2

Third Edition

Command Functions

Command functions can be considered the second highest-level programmer
interface after the command level. Command functions are used in a PRIMOS
command line, and are analogous to subroutine calls in a program: during
program execution, a subroutine call in a program statement requests the service
of a precompiled procedure stored in a subroutine library; a command function
requests the execution of a precompiled procedure at PRIMOS command level.
A command function consists of a function name and zero or more arguments or
options, all enclosed in square brackets ([1). It differs from a command in that it
can return a value and store it in a variable for use by a subsequent command or
command function. Command functions are explained in the PRIMOS
Commands Reference Guide and the CPL User’s Guide.

For repetitive operations at command level, you can build a series of commands
and command functions into a Command Procedure Language (CPL) file.
You can store a CPL program in one of your directories and execute it by
invoking it from PRIMOS command level using the RESUME command (for
detailed explanations, see the CPL User’s Guide).

You can also store CPL programs in CMDNCO and invoke them directly as
commands. However, for all but the simplest of routines, a CPL program’s
execution speed tends to be slower than that of the equivalent program stored in
compiled form.

Subroutine Calls

As described in Chapter 3, Accessing the PRIMOS File System, your application
programs can contain subroutine calls that perform a variety of functions
involving the file system: opening and closing files, reading and writing data, as
well as a number of operations involving pathnames, access control, and the like.
You can make use of the extensive library of subroutines supplied by Prime, but
you can also create your own libraries of subroutines tailored to the needs of
your applications. Commands and command functions make extensive use of
subroutines supplied by Prime during their execution; for example, the editor
program uses subroutines to open, read, write, and close text files, as well as to
create new files when necessary. These operations implicitly involve other
subroutines that may, among other things, attach to top-level directories,
evaluate access rights, and supply access control lists for newly created files. All
of these actions are largely invisible to you as you sit at your terminal running
the editor, unless you attempt to violate an access right, or PRIMOS detects
some kind of abnormal condition such as a directory quota overflow.

System Primitives

Subroutine calls are not necessarily single-level operations, but may progress to
one or more sublevels. There is a point at which no further sublevels are called

) J

D

Programmer Interfaces to the File System

during a subroutine’s execution. A subroutine that itself makes no calls to other
subroutines is known as a system primitive; it is the lowest programmer—visible
interface between a program and PRIMOS. The PRWF$$ subroutine, for
example, is a system primitive that positions, reads, writes, or truncates a file; it
can be called directly from a program, or indirectly through other subroutines
such as SRCHSS (used to open, close, delete, change access, or verify the
existence of a file).

Arguments and Options

Arguments and options are additional elements of all of the programming
interfaces described so far. They increase the flexibility of operations of
commands, command functions, and subroutines by allowing variations in the
ways in which they operate. An argument is usually a character string that
defines the object to be operated on, such as a filename, a directory name, a file
unit number, or one of the several forms of pathname. An option defines the
way the object is operated on.

For a call to the SRCH$$ subroutine, for example, an argument would be the
name of a file unit to be operated on, and an option could specify that the desired
action is to open the file unit. Another option could specify whether the file unit
was to be opened for reading, writing, or both. A subsequent call to SRCH$$
would be used to close the file unit, using the same file unit number (argument)
and a different action (option).

For example, to open a new DAM file for writing on an unused file unit, perform
some write operations on it, and then close it, you could use the following
sequence of calls:

CALL SRCHS$ (KSWRIT+K$GETU+KS$SNDAM, NEWFILE, 7, UNIT, TYPE, CODE)
. /*Do some write operations

CALL SRCH$$(K$CLOS, 0, 0, UNIT, 0, CODE)

The three K$ options in the first call specify opening a DAM file (K$NDAM)
for writing (K$WRIT) on an available file unit (K$GETU). The K$CLOS option
in the second call causes the file to be closed. UNIT is a data element defined in
the program to receive the file unit number returned by the subroutine when it
opens the file; it also specifies the file unit to be closed. The zero (0) entries in
the close call indicate that space must be reserved in the calling sequence for all
elements of the call, even though some may be unused for certain actions.

At command level, arguments and options are similarly used. For example the
SET_ACCESS command accepts both an argument to specify the name of the
object on which the access control list is to be set, and an option to specify
whether the list is to be obtained from an access category or set the same as
another (existing) object.

Third Edition 4-3

Advanced Programmer's Guide II: File System

J

Attach Points and Access Rights

All of the programming interfaces to the file system assume that you as a
programmer at a terminal, or a user using one of your programs, can access the
object or objects to be worked on. That is, the user ID of the person working on
an object must exist (either explicitly or implicitly) on that object’s access
control list (ACL), and the ACL must include, for that user ID, the kind of access
appropriate to what the person wants to do. (Refer to the PRIMOS User’s Guide
for details on access control lists.)

In order to gain access to a file system object, you (or your program) must also

be attached to the directory that either directly or indirectly (by way of one or

more lower-level directories) contains the object. You can attach to a directory

from your terminal at command level by using the ATTACH command; your

program can do the same thing by using one of the AT$ subroutine calls. In both A\
cases, Use (U) access is required at all directory levels that have to be passed

through to get to the object.

The Three Attach Points: The initial, home, and current attach points
identify your (or your user’s) initial, home, and current directories. Other terms
refer to these attach points as follows:

¢ The initial attach point identifies the initial, origin, or login directory.
e The home attach point identifies the home, or working directory. “

e The current attach point identifies the current directory.

The terms attach point and directory are generally interchangeable. You
establish an attach point by attaching to a directory.

The PRIMOS file system is heavily dependent on attach points. Most

commands, command functions, and subroutines involving file access use the

current attach point. Subroutines that accept pathnames to objects outside the

home directory can temporarily change the current attach point during their »\
execution. Some file system subroutines allow the attach points to be ”
permanently changed.

There are specific uses for and restrictions on the three attach points,
summarized as follows:

Attach Point Use

Initial Attaches you to your initial directory. The initial attach point is
established when you first log in. From the terminal, you can
attach to your initial directory at any time by issuing the
PRIMOS command ORIGIN. Your program can attach to the
initial directory by a call to the AT$OR subroutine.

J

44 Third Edition

M)

D)

Programmer Interfaces to the File System

Home Establishes and attaches you to your home directory. This
directory is your primary working directory. From the terminal,
you can change the home directory by using the ATTACH
command; a program uses a call to the ATSHOM subroutine.
Changing the home attach point also changes the current attach
point. When commands such as LD and LIST_QUOTA are
issued without arguments, the home directory is the implicit
target directory. User programs may change the home attach
point, but this is rarely done except when it is part of the
function of the program to do this.

Current Establishes and attaches you to a current directory. The current
attach point is normally the same as the home attach point.
However, programs can change the current attach point by using
one of the AT$ subroutines to operate on objects outside the
home directory without changing the home directory. Before
returning the user to command level, programs should always
reset the current attach point to the home attach point.

Most PRIMOS subroutines that change the current attach point
reset it to the home attach point before returning to their callers.
Normally, you cannot explicitly, from command level, set the
current attach point to be different from your home attach point.
You can, however, explicitly reset the current attach point to be
the same as the home attach point by issuing the ATTACH
command with no arguments.

There are currently nine access rights that PRIMOS uses at various times to
determine whether you (as a programmer) or your program (on behalf of its user)
can do what you or your program want to do with a file system object. These
rights and what actions they allow are explained in detail in the PRIMOS User’s
Guide. In brief:

Access Right Description

(0] Applies to files and directories; allows user to set access rights
except for P and ALL; if the object is a file or a segment
directory, the possessor is permitted to set the rwlock.

P Applies to directories; allows the access rights and attributes of
the directory and its subordinate objects to be changed.

D Applies to directories; allows subordinate objects to be deleted
or renamed.

A Applies to directories; allows subordinate objects to be added or
renamed.

L Applies to directories; allows their contents to be listed.

Third Edition 4-5

Advanced Programmer’s Guide lI: File System

4-6

Third Edition

U Applies to directories; allows the directory to be “used;” that is,
attached to or passed through on the way to a subordinate object.

R Applies to files; allows them to be read; allows EPFs to be
executed.

w Applies to files; allows them to be written.

X Applies to local EPFs; allows them to be executed (not required
if R is allowed).

Two other rights, represented by the character strings ALL and NONE, mean,
respectively that all of the above individual rights, or none of them, apply to the
user to whom these designations are given.

An important point to remember, when referring to a program’s access to a file
system object, is that it is not the program that must have access to the object,
but the user on whose behalf the program is running. That is, the user ID by
which a user is known to the system must exist on the access control list of the
object on which an action is to be performed.

The ACL of a newly created object is always inherited from its containing
directory. It is then said to have a default ACL. A newly created file or
directory inherits all of the access rights of its parent directory (even though R,
W, O, and X accesses are the only ones meaningful to a file). If you change the
inherited ACL of a newly created directory, then the changed ACL becomes the
default ACL for any objects subsequently created within the new directory.

The existence of the user ID on the ACL may be either explicit (the user ID
itself) or implicit (the name of a group to which the user belongs or the special
identifier $REST). Each of these has its uses in particular circumstances. For
example, if you are writing a program that creates a file for the exclusive use of
its user, it would be appropriate for that program to create for the file an ACL
that contains the user’s name explicitly, and gives him the necessary rights to the
file. On the other hand, if the program executes on behalf of a database group,
and that group has a group ID, then it would be appropriate to create an ACL
that contains the group ID and the rights applicable to the group. Any
fine—tuning of this ACL with respect to specific users in the group can be done
by using the ACL-related commands from PRIMOS command level.

Objectnames

The ways in which objectnames can be specified vary from command to
command, command function to command function, and subroutine to
subroutine. The allowable forms of objectnames (simple names, relative, full, or
absolute pathnames) for the various levels of PRIMOS interfaces are defined in
the appropriate manuals and guides. For subroutines that deal with the file
system, they are given also in later chapters of this book.

J J

J)

AR

3

Programmer Interfaces to the File System

You must keep in mind, when writing application programs that use file system
subroutines, that the way you specify an objectname in a subroutine call (if you
have a choice of method) can affect one or more of your attach points in some
unexpected way. It may also determine whether or not the user on whose behalf
your program is running has access to the object whose name is specified. Refer
to the section titled How and When Access Is Calculated in Chapter 3,
Accessing the PRIMOS File System, and remember that the same subtleties of
the ACL mechanism that apply at command level can also apply at the command
function and subroutine levels.

When interpreting objectname arguments, subroutines make a distinction
between home and current directories that is not made at command level or
command function level. For a subroutine, the current directory is the directory
to which the process is currently attached. The home directory is either the one
first attached to when the user logs in, or the one specified in a subroutine call
such as ATSHOM.

Assume, for example, that you have used the ATTACH command to attach to a
directory MYDIR. Your home and current attach points are now MYDIR. Now,
you invoke a command or program with a pathname as an argument:

MYPROG JANESDIR>MEMOS

The behavior of the home and current attach points is as follows:

1. The home attach point remains the same; from your point of view the
attach point does not change.

2. MYPROG calls various subroutines that locate, check access, and open the
MEMOS file in the JANESDIR directory. The subroutines change the
current attach point to JANESDIR.

3. When the program terminates, the last subroutine executed (typically the
one that closes the file) sets the current attach point back to MYDIR.

When you use a subroutine that accepts only a simple pathname, you must know
the current attach point (and hence the current directory), because the current
directory is the one that is used to determine the pathname of an object referred
to by a simple name.

File Units and Attributes

When a file is opened using a subroutine call such as SRCH$$, it becomes
associated with a file unit number, which is used in subsequent subroutine calls
to manipulate the file data. A file can be read or written only by referring to its
file unit number in read or write subroutine calls. File units are described more
fully in the Subroutines Reference 1I: File System.

Third Edition 4-7

Advanced Programmer’s Guide II: File System

4-8

Third Edition

Files can be opened by specifying a file unit number explicitly or by allowing
PRIMOS to allocate one (except in the FORTRAN language, which requires an
explicit file unit number). If you are writing a program that is entirely
self—contained (that is, it does not support, require support from, or otherwise
communicate file information to another program), it makes little difference how
you associate a file with its file unit number, other than to make sure that an
explicitly defined number is not already in use by the same program. However,
if your program is one element of a larger group of programs that make up a
subsystem and that have to communicate file unit information among
themselves, then it is more appropriate to let PRIMOS allocate file unit numbers,
and to have the program that opens the file the first time store the retumned file
unit number in a program variable accessible to all components of the
subsystem. This technique is particularly appropriate when a number of file
units are opened at various times and in unpredictable order.

In programming a subsystem, once a file has been opened for the first time and
associated with a file unit number, then that number should be used for all
subsequent operations on that file, using the centrally stored file unit number
returned from the first open call. In particular, if the same file is opened more
than once during an application’s execution, the file unit number resulting from
the first open call should be used to explicitly define the number for subsequent
open calls, rather than letting PRIMOS allocate a possibly different number and
cause inconsistencies to arise among the members of the family of programs in
the subsystem.

When your program has opened a directory containing a file system object, a set
of attributes describing each object contained in the directory is available to the

program. The attributes are read by the ENT$RD subroutine call into a structure
that your program provides, as described in detail in Chapter 10, File Attributes.

You must remember two things when using a subroutine that reads, sets, or
changes the attributes of an object. First, the containing directory must be open
and associated with a file unit number, since this is the argument that the
subroutine uses to determine which directory to look in for the attribute list.
Second, the object whose attributes are to be obtained, set, or changed must be
immediately contained within that directory, since the argument specifying the
object’s name does not accept a pathname (that is, the object is assumed to be in
the current directory).

The subroutine used to set or change attributes is SATRS, which is fully
described in the Subroutines Reference II: File System, along with the formats of
the structures that your program needs to provide for its operation.

PRIMOS Responses (Return Codes)

Virtually all PRIMOS subroutines communicate with their callers in one
consistent respect: they return a numeric code that informs the caller of the
subroutine’s success or failure in performing its task. For consistency,

) J

J

YY)

)

Programmer Interfaces to the File System

subroutines that you write for your own applications should also follow this
practice.

PRIMOS subroutines always place the return code in a 16-bit binary integer data
item. If the subroutine was entirely successful in completing its requested
function, the value of this integer is always zero (0). Other values are returned in
case of total failure or partial success. Your program should always check the
value of the return code upon returning from a subroutine call and take whatever
action is appropriate to the reported condition.

A complete list of PRIMOS subroutine return codes is provided in the
Subroutines Reference II: File System, with some examples of how a program
might respond to a nonzero response code.

It is important that a subroutine call that can potentially change the current attach
point be handled carefully when a nonzero code is returned. In order that the
programmer can rely on some consistent current attach point even if a subroutine
fails, most PRIMOS subroutines cause the current attach point to be set to the
home attach point before returning to their callers, regardless of where the
current attach point was before the call. Any programs, command functions, or
subroutines that are to become part of a larger subsystem should handle nonzero
return codes in a consistent way, and should be documented accordingly.

File System Operations: An Overview

This section gives you an overview of the five major operations (creating,
opening, reading, writing, and deleting) that your programs can perform on file
system objects and the general requirements that must be satisfied in order to do
these operations. They are explained in more detail in subsequent sections.

General Requirements

In order to perform operations on file system objects, the users of your programs
must be able to attach to the appropriate directories, and, in order to do this, they
must have rights appropriate to what they want to do. A successful attach to a
directory requires that the user have Use access to all directory levels from the
MFD down to the level that contains (or will contain) the object. Additional
rights required on the directory immediately containing the object depend on the
action that is to be performed. For example, in order to change the name of a

file, its owner must have both Add and Delete access to the directory containing
the file.

Third Edition 4-9

Advanced Programmer’s Guide Il: File System

4-10 Third Edition

Creating Objects

Programs that operate on files contain calls to subroutines that locate the files to
be operated on, either in the user’s home directory or in the current directory. If
the attempt to locate a file that is to be opened for writing, or for both reading
and writing, is unsuccessful, you can give the program the option of creating it in
whichever directory it was being searched for. You do this by supplying a key
that specifies the type of file to be created if it is not found. Your program can
also create lower—level directories by using the same subroutine calls with the
appropriate keys. Creating a new top-level directory requires a different
subroutine from that which creates lower—level directories and files.

If a search for a file for reading is unsuccessful, the subroutine returns an error
code; the program must decide how to handle this condition. It is fairly probable
that the file is not found because the program is attached to a directory other than
the one in which the file is expected to exist; in this case the user is most likely
expected to have attached to the proper directory from PRIMOS command level
before executing the program. However, if you suspect that the file to be read
may not exist, then you should, by means of the appropriate key, test for the
file’s existence. The program should also report its nonexistence and provide
for a graceful escape from the situation.

Opening Objects

Your programs open file system objects by using calls to any of several
subroutines, depending on where the object is relative to the home directory,
what kind of optional actions are desired (for example, creating new objects or
retrying in case of initial failure), and whether your applications are more suited
to using system library subroutines or application library subroutines. The
Subroutines Reference I1: File System, contains a chapter of all of the subroutines
you can use to open file system objects.

In general, the subroutines in the application libraries (APPLIB or VAPPLB) are
easier to use for application programs, as their user interfaces are comparatively
simple and they return codes that are either true or false. In many cases, these
subroutines call lower-level subroutines, taking care of supplying arguments
with which you as a programmer need not concern yourself. They also perform
all possible error detection and recovery tasks before returning to their callers,
thus ensuring that everything that can be done to complete the requested function
is done, and that whatever errors are encountered are reported.

Reading Objects

Assuming that your program has successfully opened an object for reading or for
reading and writing, the object can then be read, using any of several subroutine
calls. The call to be used depends on whether the object is a file, a file directory,
or a segment directory; there are also calls intended expressly for reading ASCII

J J

N

“N

)

Programmer Interfaces to the File System

text files, getting characters or lines of text from command files or from the
terminal, and getting characters from an array.

Positioning an object involves an implied read of the object, although no data is
actually transmitted. Calls to position an object can be made either with a
specified absolute position or with a position relative to the current position,
either backward or forward. An object can also be positioned at its beginning or
end.

Writing Objects

Assuming that your program has successfully opened an object for writing or for
reading and writing, the object can then be written, using any of several
subroutine calls. Generally, the writing of data files is done by explicit calls to
write a line to a text file, a data file, or a command output file or terminal. You
can also call a subroutine whose function is to store characters into an array.

The writing of other file system objects (file and segment directories and access
categories) is done implicitly during many operations on files. File creation,
ACL manipulation, and file renaming, for example, all implicitly involve writing
to these objects, but there are no explicit subroutine calls that result in writing a
specific character or string to them.

Files can be positioned to any arbitrary point before writing data to them.
Normally, when additional data is written to a SAM or DAM file, the file is
positioned to its end before writing is done; if the position is somewhere within
the file (or at its beginning), existing data is overwritten. Indexed files, such as
those used by MIDASPLUS, are capable of having records inserted into them;
such subsystems take care of insertions in such a way as not to overwrite existing
data.

Deleting Objects

Several subroutines are available to delete files and directories; the one you
choose usually depends on whether the object is directly contained in the home
directory or elsewhere.

The ability of your program to delete an object depends on the user’s access
rights not only on the object itself but also on the parent directory. The state of
the delete—protect attribute on the object also affects the user’s ability to delete
an object, independent of access rights. The ability to set or reset this attribute,
in turn, depends on the user’s having Protect rights on the parent directory.

Having given you an overview of the programmer’s interfaces to the file system
and the kinds of things that can be done with file system objects, the rest of this
chapter gives more details on file system operations at the command level and at
the subroutine level.

Third Edition 4-11

Advanced Programmer’s Guide Il: File System

Access Control to File System Objects

4-12 Third Edition

This section describes the requirements and procedures for attaching and
controlling access to file system objects, both at command level and at the
subroutine level.

As previously described, only file directories can be attached to; you cannot
attach to segment directories, access categories, or files directly, but you can
attach to the file directories that contain any of these objects.

Attach/ACL Requirements

Your user ID, or that of your program’s user, must appear at all directory levels
above the directory that is being attached to, and the access rights must include
Use access. The user ID can be explicit, or it can be implied as the member of a
specific group—id or the special group $REST. Use access can be specified
explicitly (U access) or implicitly (ALL access).

Access control lists and the subroutines for manipulating them are described
more fully in Chapter 9, Access Control Lists (ACLs).

Attaching

At the command level you can attach to two of the three kinds of attach points:
the home attach point and the initial, or origin, attach point. Remember that the
initial attach point, the point at which you are attached when you first log in,
cannot be changed except by your System Administrator or Project
Administrator. You can change your home attach point, however, at any time; in
fact, if the files you are working on (specifically, program files if you are a
programmer) are in a directory other than your initial directory, you should use
Attach commands to attach to the directory containing them.

At the subroutine level, your programs can set not only the initial and home
attach points, but also the current attach point, a (usually) temporary attachment
that is in effect only for the duration of the routine in which the subroutine is
called.

Attach to Initial Directory

Command Command Function Subroutine

ORIGIN None AT$OR

Attach to Origin Directory (Command): To attach to the initial, or origin,
directory from PRIMOS command level, use the command:

J J

J

YO

)

A

Programmer Interfaces to the File System

ORIGIN
OR

Using the ORIGIN command sets both the home and the current attach points to
the initial directory. The ORIGIN command requires no arguments.

Attach to Origin Directory (Command Function): There are no
command functions that explicitly set the attach point to any directory.
However, some command functions, such as OPEN_FILE, could implicitly
attach temporarily to the initial directory. A CPL program that needs to attach
specifically to the initial directory can use the ORIGIN command as one of its
statements.

Attach to Origin Directory (Subroutine): To attach to the initial directory
from a program, use the subroutine call:

ATS$OR (key, code)

The value of key is K$SETH if both home and current attach points are to be set
to the initial directory, or K$SETC if only the current attach point is to be set.

Note that if only the current attach point is set, any subroutine that uses a simple
objectname as an argument looks in the initial directory for the object, regardless
of the setting of the home attach point.

The details of the calling sequence for the AT$OR subroutine are given in
Chapter 6, Attach Points.

Attach to Home Directory

Command Command Function Subroutine

ATTACH None AT$HOM

Attach to Home Directory (Command): To define and attach to the home
directory from PRIMOS command level, use the command:

ATTACH [directory name]
A

Using the ATTACH command sets both the home attach point and the current
attach point to the directory specified as the argument. If no argument is given,
no change occurs (unless the current attach point has been left set at some other
point in a previous operation, in which case it is reset to the home attach point).

directory_name can be any form of pathname that leads to a file directory.

Attach to Home Directory (Command Function): There are no
command functions that explicitly set the attach point to any directory. A CPL

Third Edition 4-13

Aadvanced Programmer’s Guide Ii: File System

4-14 Third Edition

program that needs to specifically set the home directory can use as one of its
statements the ATTACH command in the form just described.

Attach to Home Directory (Subroutine): To set the current attach point to
the current home directory from a program, use the subroutine call:

ATSHOM (code)

The details of the calling sequence for the ATSHOM subroutine are given in
Chapter 6, Attach Points.

Attach to Any Directory
Command Command Function Subroutine
ATTACH None AT$
ATSABS
ATSANY
AT$REL

Attach to Any Directory (Subroutine): To set the current and (optionally)
the home attach points to a specific directory (other than the initial or home
directory), use one of the following subroutine calls:

ATS (key, path, code)

ATS$ABS (key, partition, directory, code)
AT$ANY (key, name, code)

ATS$REL (key, name, code)

Details of these calling sequences and their operations are given in Chapter 6,
Attach Points.

In all of these calls, the value of key determines whether both the current and
home attach points are to be set, or only the current attach point. A value of
K$SETH sets both; a value of K$SETC sets only the current attach point. If you
specify K$SETH, the effect is the same as if the ATTACH command had been
used at the terminal.

The ATS$ call is the most general of all of the attaching calls, in that it accepts a
pathname in any form, and then calls one of the others, depending on the results
it obtains from parsing the pathname. A null name argument (*’) means the
home directory, and is equivalent to the ATSHOM call or the ATTACH
command with no argument. You can use the AT$ call to attach to anywhere
from anywhere, regardless of whether or not the current and home attach points
were the same before the call.

) J

YD)

A

Programmer Interfaces to the File System

In the AT$ABS call, partition is the name or logical disk number of an active
disk on the system on which your program is running, or on another system
connected through a network. The partition argument can also be the null string,
implying logical disk O (zero); or it can be **’, signifying the disk partition
containing the directory to which the current attach point is set at the time of the
call.

The directory argument is the name (and optional directory password, separated
by a single space) of a top-level directory on the disk partition identified by
partition. A null directory argument signifies the MFD of the disk partition.

The AT$SANY call requires name to be an unqualified pathname, beginning with
the name of a top-level directory. Remember the rules that were given in
Chapter 3, Accessing the PRIMOS File System, for directory searching when
using an unqualified pathname.

The AT$REL call requires name to be the name of a directory immediately
subordinate to the current directory. It can include a directory password,
separated by a single space.

Access Control List (ACL) Functions

The ACL functions can be used at the command level to define, modify, list, and
delete user access rights on file system objects. You can define ACLs by default
from the object’s containing directory, by specifying separate user IDs and their
individual rights, or by specifying user groups and the rights that apply to them.
You can also define access categories that protect any number of objects with the
same ACL. The PRIMOS Command Reference Guide and the PRIMOS User'’s
Guide explain the use of the various ACL-related commands in detail.

When using ACL~related subroutines in a program, your program must furnish
the ACL entries in the form of a structure containing the user ID/access right
pairs; the subroutine call supplies the address of the structure in the form of a
pointer argument, addr(acl_struct). Chapter 9, Access Control Lists (ACLs),
gives the details of the calling sequences and operations of all of the
ACL-related subroutines.

The ACL structure is shown pictorially in Chapter 9, Access Control Lists
(ACLs), and in program declaration form in the Subroutines Reference II: File
System.

The target object for any ACL-related command or subroutine can be a file, a
file directory, or a segment directory. An access category is a special object that
contains an ACL used to protect other objects; the ACL of the access category
itself is the same as that of the group of objects it protects.

At both command and subroutine levels you, or your program’s user, must have
Protect and List access to the containing directory, and Protect access to the
object on which an ACL is to be set.

Third Edition 4-15

Advanced Programmer’s Guide ll: File System

4-16 Third Edition

Setting Default Access

Command Command Function Subroutine

SET_ACCESS None ACSDFT

Setting Default Access (Command):PRIMOS gives a default ACL
automatically to any object whenever the object is created; the ACL is the same
as that of the containing directory. (The System Administrator or Project
Administrator should set a specific ACL, as described later, on a top-level
directory if it is to be different from that of the MFD.) Any objects created at
levels below the top-level directory then gets this specific ACL by default.

To set a default ACL from PRIMOS command level, use the command

SET_ACCESS objectname
SAC

In this form of the SET_ACCESS command, if the target object has an ACL
different from the default, its ACL is reset to the default. A message may be
returned indicating that there is already an ACL set on the object and asking
whether it is to be replaced; the message can be suppressed by using the
—NO_QUERY option.

Be careful, when you set the default access on an object, that the directory that is
supplying the default ACL has rights appropriate to the object on which the
default is being set. For example, Read and Write access as such are not
meaningful to directories, but are usually included in directory ACLs so that they
are inherited by subordinate files automatically.

Setting Default Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set an ACL
can use the appropriate PRIMOS command as a program statement.

Setting Default Access (Subroutine): To sct a default ACL from a
program, use the subroutine call

ACS$DFT (name, code)

The name argument can be any of the valid forms of pathname. The same
precautions regarding propagated ACLs apply to the AC$DFT subroutine as to
the SET_ACCESS command described above.

Details of the calling sequence and its operation appear in Chapter 9, Access
Control Lists (ACLs).

') I

“N

J)

A

5

Programmer Interfaces to the File System

Setting Specific Access

Command Command Function Subroutine

SET_ACCESS None ACSSET

Setting Specific Access (Command): To set a specific ACL from
PRIMOS command level, use the command

SET _ACCESS objectname user—id:access—rights . .. [-NO_QUERY]
SAC

In this form of the SET_ACCESS command, the resulting ACL contains the list
of users and access rights given as arguments to the command, plus, by default,
$REST:NONE if no other specific rights are given to the $REST group. The
ACL thus produced replaces any ACL already existing on the object. To modify
an existing entry on an ACL without replacing the ACL, use the EDIT_ACCESS
command, described later.

If objectname does not exist, PRIMOS assumes that you want to create an access
category. If you do, refer to Creating an Access Category, described later;
otherwise answer NO to the query returned by PRIMOS.

Setting Specific Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set an ACL
can use the appropriate PRIMOS command as a program statement.

Setting Specific Access (Subroutine): To set a specific ACL from a
program, use the subroutine call

ACSSET (key, name, addr(acl_struc), code)

In the AC$SET subroutine call, name govems the creation and replacement of
ACLs and specifies the error to retumn if AC$SET is called to replace a
nonexistent ACL or to create an ACL on an object that already has one. The
ACSSET description in Subroutines Reference I1: File System lists the possible
key values and their meanings. name specifies the object that is to receive the
new ACL, as in the AC$DFT call previously described. The structure of the
ACL entries is shown in diagrammatic form in Chapter 9, Access Control Lists
(ACLs). Each entry can have as many as 80 characters, and there can be as many
as 32 entries in a given list.

Setting Category Access

Command Command Function Subroutine

SET_ACCESS None ACSCAT

Third Edition 4-17

Advanced Programmer’s Guide Il: File System

'l J

Setting Category Access (Command): To set the access of an object to
that of an existing access category, use the command

SET_ACCESS objectname -CATEGORY acatname
SAC —CAT

objectname argument can be any valid form of pathname. The access category
specified by acatname must exist in the same directory as that of the object being
protected. (Creating an access category is described later in this section.)

Setting Category Access (Command Function): There are no
command functions to set access control lists. A CPL program that needs to set
an ACL can use the appropriate PRIMOS command as a program statement.

Setting Category Access (Subroutine): To set the ACL of an object —\
from a program, use the subroutine call

ACSCAT (name, category, code)

The name argument identifies the object to be protected; it can be any valid form

of pathname. category is the simple name of the access category that is to

protect name; the access category must exist and must reside in the same

directory as name. The calling sequence and operation of the AC$CAT

subroutine are described more fully in Chapter 9, Access Control Lists (ACLs). '\
Access requirements for using the AC$CAT subroutine are described in the

Subroutines Reference Il: File System.

Setting Access Like That of Another Object

Command Command Function Subroutine

SET_ACCESS None ACSLIK

Setting Access Like That of Another Object (Command): To set an
object’s access so that it is identical to that of another object from PRIMOS
command level, use the command

SET_ACCESS objectnamel —LIKE objectname2
SAC

Both objectnamel and objectname2 can be any valid form of pathname; objects
need not be in the same directory. objectnamel identifies the target object on
which the access is to be set; objectname2 identifies the object whose access is to
be applied to the target object.

There is also no requirement that source and target objects be of the same type. If
the source and target objects are of different types (for example, the source is a ‘\

4-18 Third Edition \

Y)

Programmer Interfaces to the File System

directory and the target is a file), be sure that the source object includes access
rights appropriate to the target, as described previously in this chapter.

When you use this form of the command, it does not matter whether the source
object’s ACL is derived from its superior directory, from an access category, or a
specific ACL; the ACL of the target is always a specific ACL, since it is the
ACL's values that are copied, not the location of its source.

Setting Access Like That of Another Object (Command
Function): There are no command functions to set access control lists. A
CPL program that needs to set an ACL can use the appropriate PRIMOS
command as a program statement.

Setting Access Llke That of Another Object (Subroutine): To set an
object’s access so that it is identical to that of another object from a program, use
the subroutine call

ACSLIK (target, reference, code)

Both target and reference are any valid form of pathname; target identifies the
object on which an ACL is to be set, while reference identifies the source of the
ACL. The actions are the same as described in the command description just
given; the calling sequence is described more fully in Chapter 9, Access Control
Lists (ACLs). The Subroutines Reference Il: File System gives information on
the access rights required to use the AC$LIK call.

Creating an Access Category

Command Command Function Subroutine

SET_ACCESS None ACSSET

Creating an Access Category (Command): To create an access category
from PRIMOS command level, use the command

SET _ACCESS objectname user—id:access-rights . . .
SAC

This is the same form of SET_ACCESS command as you use to set a specific
ACL on an object, as described previously under Setting Specific Access. The
difference is that, in this case, objectname identifies a nonexistent object, and
PRIMOS assumes that you want to create an access category. PRIMOS tells you
that the access category does not exist and asks whether you want to create it. If
you do, the access category is created and given the name objectname. ACAT and
the specified ACL entry or entries. You can then use this access category in
subsequent operations to set category access as described previously.

Third Edition 4-19

Advanced Programmer'’s Guide lI: File System

4-20 Third Edition

Be careful, if you really want to create an access category, that the named object
does not exist; otherwise, PRIMOS locates the named object and apply the
specified ACL entry or entries to it, with possibly unwanted results. If you know
that an object whose name is, say, PRIVATE exists, you can still create an access
category with the name PRIVATE.ACAT in the same directory by explicitly
supplying the .ACAT suffix when giving objectname. PRIMOS recognizes this
as a different object from PRIVATE, and creates the access category
PRIVATE.ACAT.

The objectname argument can be any valid form of pathname, implying that you
can create an access category anywhere. Remember, though, that an access
category must be in the same directory as the object(s) it is intended to protect.

Creating an Access Category (Command Function): There are no
command functions to create access categories. A CPL program that needs to
create one can use the appropriate PRIMOS command as a program statement.
It would be prudent for your CPL program to test for the existence of the named
object using the [EXISTS] command function before attempting to use the
command to create an access category. If the function returns a result indicating
that the object exists, it should allow the user to specify what to do. Refer to the
CPL User’s Guide for information on the [EXISTS] command function and how
to query the user and request a response.

Creating an Access Category (Subroutine): To create an access
category from a program, use the subroutine call

ACSSET (key, name, addr(acl_struc), code)

When using ACS$SET to create an access category, name must identify a
nonexistent object (any valid form of pathname), and key must have a value of
either O (zero) or KSCREA. As before, addr(acl_struc) is a pointer to an area in
your program that contains the structure of the ACL to be set on the access
category.

The calling sequence and operation of the AC$SET subroutine are more fully
presented in Chapter 9, Access Control Lists (ACLs). The Subroutines Reference
1I: File System gives the access rights required to use the AC$SET call.

Changing Access to an Object

Command Command Function Subroutine

EDIT_ACCESS None ACS$CHG

Changing Access to an Object (Command): To change an existing
ACL on a file system object from PRIMOS command level, use the command

EDIT_ACCESS objectname user—id:access-rights . ..
EDAC

J J

DEN

Programmer Interfaces to the File System

The objectname argument identifies a file system object that already has an ACL
of any type: specific, category, or default. The object can be identified by any
valid form of pathname. The ACL argument(s) identify one or more individual
entries on the list that are to be added, deleted, or changed. Only the specified
entries are affected; unreferenced entries are left on the list unchanged.

Changing Access to an Object (Command Function): There are no
command functions to modify access categories. A CPL program that needs to
modify one can use the appropriate PRIMOS command as a program statement.

Changing Access to an Object (Subroutine): To change an existing
ACL on an object from a program, use the subroutine

ACSCHG (name, addr(acl_struc), code)

In the AC$CHG call, the name and addr(acl_struc) arguments have the same
functions and requirements as in the AC$SET call described earlier. This is the
fundamental call used for changing access, and behaves in the same way as the
EDAC command. There are other methods, which are described in Chapter 9,
Access Control Lists (ACLs), used to change an existing ACL to that of another
object and to make selective modifications to it afterwards.

Deleting Access Control Entries

Command Command Function Subroutine
SET_ACCESS None ACSSET
EDIT_ACCESS None ACS$CHG

Deleting ACL Entries: There are no explicit commands, command
functions, or subroutines that perform the sole function of deleting an ACL entry
or entries; the basic approach to accomplish this is to use the SET_ACCESS or
EDIT_ACCESS functions, and to include entries that contain the special access
right NONE.

For example, if an ACL contains an entry BAKER:LUR and you want to
exclude user BAKER from any access at all, you can use the EDIT_ACCESS
command (or the AC$CHG subroutine call), specifying the explicit entry
BAKER:NONE. This explicitly states that user BAKER has access NONE, and
an entry to this effect is placed on the ACL. Alternatively, you can use the
EDIT_ACCESS command, specifying BAKER:, that is, the user ID and the
colon, but no access rights. This results in the entry for user BAKER being
deleted from the ACL entirely.

You can also use the SET_ACCESS command (or the AC$SET subroutine call)
and explicitly specify all of the entries on the existing ACL except the entry for
BAKER.

Third Edition 4-21

Advanced Programmer’s Guide II: File System

Using the EDIT_ACCESS command is much the easier method, especially if the
ACL is long and complex.

Creating File System Objects

4-22 Third Edition

File system objects are created in several different ways, depending on the type
of object. In order to create any type of object, you (at command level) or your
program’s user must have Add access to the directory immediately containing
the object, and Use access to any higher-level directories.

For those objects that can be created at command level (file directories, files, and
access categories), you can specify either a simple name to create the object in
the home directory, or a pathname to create the object in any other directory for
which you have the appropriate access.

Creating Portals

A portal is a file system object, new at Rev. 23.0, that re-routes file system
references from one directory to another. Portals are used to reference other
common file system name spaces. Any references (for example, the AT$-type
subroutines) to the original directory are automatically redirected by a
disk—directed portal to the MFD of the specified directory on the remote
machine.

Creating Portals

Command Command Function Subroutine

ADD_PORTAL None NAMSAD_PORTAL

Creating a Portal (Subroutine): To create a portal from a program, use the
subroutine call

NAMSAD PORTAL (entryname, portal_info, code)

NAMS$SAD_PORTAL converts an existing directory entry into a portal by
mounting the defined portal over the directory. Future references to the original
directory are redirected to the portal until you remove the portal with the
NAMSRM_PORTAL subroutine, described later in this chapter, or the
REMOVE_PORTAL command. You may only use this subroutine at the
supervisor terminal (User 1). Figure 4-1 shows the calling sequence of the
NAMS$AD_PORTAL.

J J

yH

)

Programmer Interfaces to the File System

Creating a Portal

Entry Changed

When Portal
Is Created
Entry Changed
When Portal
Is Created
CHAR (32) <=32
VARIABLE STRING

' {

NAMS$AD_PORTAL (entryname, portal_info, code)

{

HALF
INT

l

Standard
Error
Code

004.01 D10056 LA

Figure 4-1. Calling Sequence of NAM$AD_PORTAL

entryname [char(32) var] The entry that is changed when you create the
portal.

portal_info [string] The input structure that defines the attributes of the
portal you are creating.

NAMSK ROOT by 1, /* is root-portal */
NAM$K NOROOT by 2; /* is disk-portal */
dcl 1 portal_info,

2 version fixed bin(15),

2 portal target key fixed bin(15),

Third Edition 4-23

Advanced Programmer’s Guide ll: File System

4-24 Third Edition

2 portal_target,
3 node name char(1l6) var, /* must be
specified */
3 partition name char(6); /* only for
disk portal /*

code [fixed bin] The standard return code. See the next section for a
list of error codes.

NAMS$AD_PORTAL Errors: The following list describes errors associated
with the NAM$AD_PORTAL subroutine.

Error Name Description

E$SCCM This routine may only be used at the supervisor
terminal.

E$BVER The portal structure version number that you
specified is invalid.

E$BKEY The key that you specified is invalid.

E$WRIT You do not have access rights for this operation.

E$BNAM The entryname that you specified uses incorrect
syntax.

E$UNOD The nodename that you specified is not in
PRIMENET.

E$BPOR The portal target must be a remote node.

E$IROO A portal may not be mounted on a root directory.

ESNTUD The specified entryname must be a directory.

ESMTPT A portal already exists at the point where you are
trying to mount a portal.

E$RPMH You cannot create a portal through another portal.

E$IREM The portal mount must be on a local directory.

E$SFMTF No such entryname exists.

Creating File Directories

In order to create a directory, you (or your program’s user) must have Add access
to the directory (which may be the MFD) that contains the directory, and Use
access to any directories that are superior to the one being created.

) J

)

b

Programmer Interfaces to the File System

Creating File Directories

Command Command Function Subroutine
CREATE None DIRSCR
CREASS *

* The CREA$$ subroutine is documented in Appendix A of Subroutines
Reference II: File System. 1t is considered obsolete at PRIMOS Rev. 20.2.
Although CREAS$S is still supported, programs should use DIR$CR beginning
with Rev. 20.2.

Creating a File Directory (Command): To create a file directory from
command level, use the command

CREATE directory_pathname [-MAX n] [-CATEGORY acatname]
CR —-CAT

The directory pathname argument can be any legitimate form of pathname,
implying that you can create a file directory anywhere, provided, of course, that
you have the appropriate access. The ACL of the new directory is the same as
that of the containing directory; you can modify it once the directory exists by
using any of the access control commands described previously.

Creating a File Directory (Command Function): You can include the
CREATE command in a CPL program in the same form that you use when you
enter the command at your terminal; if you invoke the CPL program from your
terminal, the results are the same, including the return of error messages.
However, if you invoke the CPL program as a phantom, no error messages are
returned to your terminal. The program would not, for example, return a
message if you were to try to create a directory that already existed. It would
therefore be wise to check for the existence of the directory before attempting to
create it; you can use the [EXISTS] command function for this purpose, as
described in the CPL User’s Guide.

Creating a File Directory (Subroutine): To create a file directory from a
program, use the subroutine call

DIRSCR (dirname, addr(attributes), code)

The DIR$CR subroutine creates a lower—level directory in the location indicated
by the pathname. It creates a password directory if the current directory is a
password directory; in this case, the owner and nonowner passwords are applied
to the new directory. If the current directory is an ACL directory, the new
directory is also an ACL directory; in this case, any passwords supplied in the
call are ignored.

Third Edition 4-25

Advanced Programmer’s Guide Il: File System «
-~

Note The CREPWS subroutine creates a password directory within an ACL directory. Itis
documented in Appendix A of the Subroutines Reference II: File System. CREPW$ is
considered obsolete at PRIMOS Reyv. 20.2. Although CREPWS is still supported,
programs should use DIR$CR beginning with Rev. 20.2.

Creating Files

In order to create a file, you (or your program’s user) must have Add access to
the directory that is to contain the file, and Use access to all superior directories

leading to this directory.
Creating Files \
Command Command Function Subroutine
None None SRCH$$
SRSFX$
TSRC$$ *
* The TSRC$$ subroutine is documented in Appendix A of the Subroutines \

Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCS is still supported, programs should use SRSFX$ beginning
with Rev. 20.2.

Creating a File (Command): There is no command that explicitly creates a
file; files are implicitly created by PRIMOS programs such as ED, the compilers,
the PMA assembler, and the linkers SEG, LOAD, and BIND.

An empty file is implicitly created from PRIMOS command level if the OPEN

command is given to open a nonexistent file for writing or for reading and N
writing. Opening file system objects is discussed in more detail later in this

chapter and in Chapter 7, Text Storage and Retrieval, and Chapter 8, Data

Storage and Retrieval.

Creating a File (Command Function): As at PRIMOS command level,
there is no command function that explicitly creates a file; you can include the
OPEN command as a CPL program statement if you want the program to create
an empty file.

Creating a File (Subroutine): To create a file from a program, use one of
the subroutine calls

4-26 Third Edition ﬁ

)

Programmer Interfaces to the File System

SRCHSS (key, name, name_len, unit, type, code)

SRSFXS (key, name, unit, type, num_suffixes, suffixes, basename, suffix_used,
code)

These calls are described in greater detail in Chapter 7, Text Storage and
Retrieval, and in Subroutines Reference 1l: File System.

In all cases, the newfile portion of key specifies the type of file (SAM or DAM)
to be created if the object specified by name does not exist and the action to be
performed is writing or reading and writing.

For the SRCH$$ call, the name argument is a simple name; the resulting file is
created in the current directory and given the same protection as that of the
current directory.

For SRSFX$, name is any form of pathname; the resulting file is created in the
directory specified by the directory portion of name, and given its protection.

Creating Access Categories: The creation of access categories was
described earlier in the section entitled Access Control Functions.

e OPENING FILE SYSTEM OBJECTS

To open a file system object, you (or your program’s user) must have Use access
to all directory levels leading to the object to be opened. Additional rights
required on the object itself and its containing directory depend on the action to
be performed on the opened object.

As described previously, attempting to open a nonexistent file normally results in
that file being created in an empty state; the discussion in the following
subsections assumes that the object already exists.

Opening File Directories

File directories can be opened at both command level and at subroutine level;
however, they can be opened only for reading. File directories are written to
implicitly whenever some action on or within the directory requires that
information in the directory be updated (such as the date-time-last-modified or
access control information).

Third Edition 4-27

Advanced Programmer’s Guide II: File System

4-28 Third Edition

Opening File Directories

Command Command Function Subroutine
OPEN OPEN_FILE SRCHS$$
SRSFX$

TSRCS *

* The TSRC$$ subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS$ is still supported, programs should use SRSFX$ beginning
with Rev. 20.2.

Opening File Directories (Command): There is not much to be gained
from opening a file directory interactively, since there are no commands that
enable you to read the directory interactively. However, PRIMOS does not
prevent your doing this; if you want to open a file directory from PRIMOS
command level, use the command

OPEN pathname funit key
0

pathname can be any form of pathname leading to a file directory to which you
have Read access. You must specify a file unit number funit; PRIMOS does not

look for an unused file unit when an object is being opened from command level.

The key argument must specify a value of 1 (read). See the PRIMOS Commands
Reference Guide for a full description of the OPEN command.

Opening File Directories (Command Function): PRIMOS allows a file
directory to be opened by the OPEN_FILE command function, but does not
allow any other operations (other than CLOSE) to be performed on it. Use the
following form in a CPL program:

&SET_VAR unit := [OPEN_FILE pathname status -MODE R]

In this CPL statement, unit is a local or global variable that receives the file unit
number assigned to the opened directory by PRIMOS; status is a local or global
variable that receives the status code resulting from the operation. pathname can
be any of the valid forms. See the PRIMOS Commands Reference Guide and the
CPL User’s Guide for more detailed descriptions of the OPEN_FILE command
function.

Opening File Directories (Subroutine): To open a file directory from a
program, use calls to the subroutines described previously for creating file
system objects:

4 J

M)

)

Programmer Interfaces to the File System

SRCHSS (key, name, name_len, unit, type, code)

SRSFXS$ (key, name, unit, type, num_suffixes, suffixes, basename, suffix_used,
code)

In all cases, the action portion of key specifies the action(s) to be performed
(read, write, or read and write).

For the SRCHS call, name can be only a simple name, the name of the directory
being searched for in the current directory.

For SRSFX$, name is any form of pathname.

Opening Files

Files contained in file and segment directories can be opened for reading,
writing, or reading and writing at command, command function, and subroutine
levels. In all cases, Use access is required on the containing directory and
superior directories, and Read, Write, or Read and Write access is required on the
file, depending on the actions to be performed.

Opening Files
Command Command Function Subroutine
OPEN OPEN_FILE SRCH$$
SRSFX$
TSRCSS *

* The TSRC$$ subroutine is documented in Appendix A of the Subroutines
Reference Il: File System. 1t is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCS is still supported, programs should use SRSFX$ beginning
with Rev. 20.2.

Opening Files (Command): To open a file (either text or data) from
command level, use the command

OPEN pathname funit key
0

The pathname argument can be any form of pathname leading to a file. You
must specify a file unit number funit; PRIMOS does not look for an unused file
unit when opening a file from command level. The key argument must specify a
value indicating the action to be performed. Refer to the PRIMOS Commands
Reference Guide for details on the use of the OPEN command and its arguments.

Third Edition 4-29

Advanced Programmer’s Guide lI: File System

Opening Files (Command Function): To open a file (either text or data)
from a CPL program, use a statement of the form

&SET_VAR unit := [OPEN_FILE pathname status -MODE x]

In this CPL statement, unit is a local or global variable that receives the file unit
number assigned to the opened file by PRIMOS; status is a local or global
variable that receives the operation’s status code. pathname can be any of the
valid forms. The mode argument x specifies the action(s) for which the file is
being opened: R (Read), W (Write), or RW or WR (Read and Write). Note that
if the file is being opened in any mode that allows writing and the file does not
exist in the directory indicated by pathname, the file is created with no indication
of an error. Therefore, if proper operation of your CPL program depends on a
pre—existing file of the specified name, it would be wise to test for its existence
before opening it for writing. See the PRIMOS Commands Reference Guide and
the CPL User’s Guide for more detailed descriptions of the OPEN_FILE
command function.

Opening Files (Subroutine): To open a file from a program, use calls to
the subroutines described previously for creating and opening file system
objects.

SRCHSS (key, name, name_len, unit, type, code)

SRSFXS (key, name, unit, type, num_suffixes, suffixes, basename, suffix_used,
code)

In all cases, the action portion of key specifies the action(s) to be performed
(read, write, or read and write).

For the SRCH$$ call, name can be only a simple name, the name of the file
being searched for in the current directory.

For SRSFXS$, name is any form of pathname.

Segmented files (members of a segment directory) can be opened by the
SGD$OP subroutine call, described in Chapters 7, Text Storage and Retrieval
and 8, Data Storage and Retrieval.

Reading File System Objects

4-30 Third Edition

After an object has been opened, it can be read under certain conditions and from
some, but not all, programmer interface levels. From the command level,
directories cannot be read, nor can fixed—length data records; variable-length
text records can be read and displayed on the terminal, but only indirectly
through a command function. Any kind of object can be read from program level

J J

J

Y)

N

Programmer Interfaces to the File System

by use of sevcral special-purpose subroutines, as well as some of the
general—-purpose subroutines alrcady described. In all cases, Read access is
required on the object to be read, and Use access is required to all superior
directories.

Reading Directories

Command Command Function Subroutine

None None DIRSLS
DIRSSE
DIRSRD
ENT$RD
SGDRS$$

Reading Directories (Command and Command Function): There is
no mechanism by which directory entries can be read from command level or
from command function level. This applies to both file and segment directories.
(Directory contents can, of course, be displayed or written to a COMO file by
using the LD command.)

Reading Directories (Subroutine): Your program can read file directories
in several ways using any of the following subroutine calls:

DIRSLS (dir-unit, dir-type, initialize, desired—-types, wild-ptr, wild—count,
return—ptr, max—entries, entry—size, ent-returned, type—Counts,
before—date, after—date, code)

DIRSSE (dir-unit, dir-type, initialize, sel-ptr, return—ptr, max—entries,
entry-size, ent-returned, type—counts, max—type, code)

DIRSRD (key, unit, return-ptr, max—return—len, code)

ENT$RD (unit, name, return—ptr, max—return—len, code)

DIRSLS is a general-purpose directory searcher that takes arguments used to
select entrics to be searched for. Selection criteria can be object types, wild—card
names, date and time last modified, or combinations of these. Selection can not
be by date and time last accessed or date and time created. Either file or segment
directories can be read. Selection can begin at the beginning of the directory or at
the current position; entries are rctumned in a structure provided by the program
that is capable of holding max—entries entries, and are pointed to by return—ptr.
This call is fully described in the Subroutines Reference 11: File System.

Third Edition 4-31

Advanced Programmer’s Guide Il: File System

4-32 Third Edition

DIRS$SE extends the functionality of DIR$LS by using a structure to contain
additional selection criteria, including date and time last accessed and date and
time created. DIR$SE is fully described in the Subroutines Reference II: File
System.

DIRS$RD reads the contents of a directory sequentially, one entry at a time, and
returns each entry read in a program—provided structure pointed to by return—ptr.
It returns only named file system objects, and therefore cannot be used to read
subentries in a segment directory. It returns names for files, file directories, and
access categories. This call is described more fully in Chapter 8, Data Storage
and Retrieval, and in the Subroutines Reference II: File System.

ENTS$RD is used to read the contents of a specific directory entry whose name is
given as the name argument. The entry is returned in a structure identical to that
used by DIR$RD, and pointed to by return—ptr. The entry being searched for
must exist in the current dircctory, since name is defined as having a length of 32
characters. This call is described in detail in the Subroutines Reference II: File
System.

Segment directories can be read by using either of the following calls

DIRSLS (dir-unit, dir-type, initialize, desired—types, wild-ptr, wild—count,
return-ptr, max—entries, entry-Ssize, ent-returned, type—counts,
before-date, after—date, code)

SGDRSS (key, unit, start_position, end_position, code)

DIRSLS is used as described for file directorics, except that dir—type must have a
value of 2 for a SAM segment directory, or 3 for a DAM segment directory.

SGDRS$$ retumns an integer representing the position in the directory of the first
or next full or free position in the segment dircctory, depending on the values of
key and start_position. key is KSFULL or K$FREE to look for full or free
entries, respectively. A start_position value of zero (0) looks for the first entry; a
value equal to the position of the last full or free entry plus 1 looks for the next
entry. The position integer is returned in end_position. The SGDR$$ call is
described in detail in Chapter 8, Data Storage and Retrieval, and in the
Subroutines Reference Il: File System.

Reading Files
Command Command Function Subroutine
None READ FILE RDLINS

PRWF$$

) J

J

YD

Programmer Interfaces to the File System

Reading Files (Command): There are no commands that enable you to
read a file directly from PRIMOS command level. However, a text file can be
read indirectly and displayed to your terminal (or written to a COMO file), one
line at a time, by using a TYPE command whose argument is a [READ_FILE]
command function, described next.

Reading Files (Command Function): You can read an ASCII (text) file
from a CPL program by including a statement of the form:

&SET_VAR read_data := [READ_FILE unit status_var]

In this CPL statement, unit is the decimal number of the file unit on which the
file has been previously opened. You supply local or global variable names for
the variables read_data and status_var. The former receives the line of text read
from the file, while the latter stores the return code from the execution of the
read. (The setting and evaluating of variables, and the use of the READ_FILE
command function, are described in the CPL User's Guide).

Reading Files (Subroutine): To read a file from a program, use one of the
following subroutine calls

RDLINS (unit, input_line, max_line_length, code)
PRWEFS$S (key, unit, addr(buffer), size, pre_posn, halfwords_read, code)

The RDLINS call is used to read variable—sized records from a file open on unit
into a buffer, pointed to by input_line. Reading ends when a new-line character
is encountered. If the number of characters read is less than max_line_length, the
remaining buffer characters arc blank—filled. The RDLIN$ calling sequence is
illustrated in Chapter 7, Text Storage and Retrieval; the subroutine’s operation is
further explained in Chapter 7, Text Storage and Retrieval, and in the
Subroutines Reference Il: File System.

Use the PRWFS call to position and read fixed-length data files. Positioning
and reading are only two of many functions that PRWF$$ can perform; its
complete functionality is described in Chapter 7, Text Storage and Retrieval, and
in the Subroutines Reference 1l: File System.

In addition to RDLIN$ and PRWFS$$, there are subroutines whose functions arc
to read from other than disk devices: RDASC reads ASCII characters from any
device, while RDBIN reads binary data from any device. These subroutines are
described in the Subroutines Reference Il: File System.

Third Edition 4-33

4-34 Third Edition

Advanced Programmer’s Guide Il: File System

Reading the Global Mount Table

Command Command Function Subroutine

LIST_MOUNTS None NAMSL_GMT

Reading the Global Mount Table (Command): LIST_MOUNTS reads
the contents of the Global Mount Table and returns a list of both the
currently-mounted disk partitions and the currently—mounted portals which the
calling program can access. You must be the System Administrator, or you
must use the supervisor terminal, in order for NAMSL_GMT to return the
remote private partitions (partitions on other machines that were created with the
ADDISK -PRIVATE command). The LIST _MOUNTS command is discussed
in the PRIMOS User’s Release Document.

Reading the Global Mount Table (Subroutine): NAMSL _GMT reads
the contents of the Global Mount Table and returns a list of both the
currently-mounted disk partitions and the currently—mounted portals which the
calling program can access. You must be the System Administrator, or you
must use the supervisor terminal, in order for NAM$L_GMT to return the
remote private partitions (partitions on other machines that were created with the
ADDISK —PRIVATE command).

NAMSL_GMT(index, ret_ptr, max_items; ret_items, code)

index (fixed bin) A number that indicates the starting Global Mount
Table entry in the list to be retumed; use index when filling in
the structure to which ret_ptr points. The GMT list of entries
may be referenced as an array

[0..(N-1)]

where N is the total of the number of entries in the GMT. Use an
array to call the NAMSL_GMT subroutine as many times as
there are GMT entries if the declaration of the structure is too

small.

ret_ptr A pointer to the structure that NAMSL_GMT fills in (the items
for each GMT entry).

max_items (fixed bin) The maximum number of entries to be declared as

GMT entries in the index field. If the max_items field is smaller
than (N-1), structure overflow occurs.

ret_items (fixed bin) The number of entries filled in the structure.

) J

YD

)

h)

Programmer Interfaces to the File System

code (fixed bin) The standard return code (NoError indicates
successful completion).
Badlndex (error) No such entry exists at the index given in the GMT.

Writing File System Objects

Writing Directories

Command Command Function Subroutine
None None SGDR$$
SGDSDL

File and segment directory objects are most often written to implicitly, as a result
of performing some function on a subordinate object that reflects a need to add
or update control information in its containing directory. Each time a file open
for writing is closed, for example, the date—time—last—-modified information in
the containing directory needs to be changed; this is done as an implicit
byproduct of the close operation.

No writing to directories of either type can be done explicitly by commands or
command functions, and only a limited number of writing operations can be
done to directories at subroutine level, and these only on scgment directories.
Likewise, there are no commands by which you can explicitly write records to a
file from command level; you can, however, write variable-length text records
using a command function in a CPL program.

Write access is required on any object to be written to; Use access is required to
all superior directories, and Add access is required to the containing directory if
a previously nonexistent file is being written into that directory. (If the name of
a file or other object in a directory is being changed, Delete as well as Add
access is required on the containing directory.)

Writing Segment Directories (Subroutine): You can effectively write to
a segment directory from program level by using the subroutine calls

SGDRSS (key, unit, new _size, ignored, code)
SGD$DL (unit, code)

The SGDRS$$ call is used to extend or truncate a segment directory open on unit
by specifying the key value K$MSIZ and the new number of members in the
new_size argument. The ignored argument is not used, and should be zero (0).

Third Edition 4-35

Advanced Programmer’s Guide Il: File System

4-36 Third Edition

The SGD$DL call is used to delete a member of the segment directory open on
unit. If the member deleted is not the last member of the directory, effectively
the size of the directory does not change; it changes only if the member deleted
is the last one.

Both of these subroutines and their calling scquences are described in Chapter 8,
Data Storage and Retrieval.

Writing Directories

Command Command Function Subroutine
None WRITE_FILE WTLINS
PRWEF$$

Writing Files (Command): There is no direct command by which a text line
or data file record can be written from command level. You can, however, write
a text line using the WRITE_FILE command function described next.

Writing Files (Command Function): You can write text files (but not data
files) from a CPL program by using the command function

[WRITE_FILE unit text]

The unit argument is the file unit number of a text file previously opened for
writing or for reading and writing. The text to be written, represented by text,
can be either literal text (enclosed in quotes if it contains spaces or special
characters), or the current contents of a local or global variable previously set by
a command function such as RESPONSE. Refer to the CPL User’s Guide for
further information on the WRITE_FILE command function.

Writing Files (Subroutine): To write a file from a program, use one of the
following subroutine calls

WTLINS (unit, output_line, max_line length, code)

PRWF$$ (key, unit, addr(buffer), size, rel_posn, lhalfwords_read, code)

The WTLINS call is used to write variable—sized (usually ASCII text) records to
a file open on unit from a buffer, pointed to by output_line. Writing ends when a
new-line character is encountered. If the number of characters written is less
than max_line_length, the remaining characters in the buffer are blank—filled.
The WTLINS calling sequence is illustrated in Chapter 7, Text Storage and
Retrieval; the subroutine’s operation is further explained in Chapter 7, Text
Storage and Retrieval, and in the Subroutines Reference Il: File System.

) I

J

r [] |} . - . L] L [] - []
Programmer Interfaces to the File System
~

Use the PRWFS$$ call to position and write fixed-length data files. Positioning
and writing are only two of many functions that PRWF$$ can perform; its
complete functionality is described in Chapter 7, Text Storage and Retrieval, and
in the Subroutines Reference Il: File System.

In addition to WTLINS and PRWFS$$, there are subroutines whose functions are
to write to other than disk devices: WRASC writes ASCII characters to any
device, while WRBIN writes binary data to any device. These subroutines are
described in the Subroutines Reference IV: Libraries and 1/0.

Closing File System Objects

r Any file system object that is capable of being opened from command, command
function, or subroutine level is also capable of being closed. Objects can be
closed only by the CLOSE command or a subroutine; there is no CLOSE_FILE
command function to match the OPEN_FILE command function. However, the
CLOSE command can be included in a CPL program either with or without the
enclosing brackets ([]); the results are identical.

Closing File System Objects

r Command Command Function Subroutine
CLOSE CLOSE CLOSFU

CLOSFN

SRCH$$

SRSFX$

r TSRC$$*

* The TSRC$$ subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS is still supported, programs should use SRSFX$ beginning
with Rev. 20.2.

Closing Objects (Command and Command Function): To close an
object from command or command function level, use one of the following

CLOSE objectname

[CLOSE objectname]

)

3

Third Edition 4-37

Advanced Programmer’s Guide II: File System

objectname is any valid form of pathname. The CLOSE function does not return
a code indicating that an object is not open; it does, however, return a code if the
object is not found.

Closing Objects (Subroutine): To close a file system object from program
level, use one of the subroutine calls

CLOS$FU (unit, code)
CLOSFEN (pathname, code)
SRCHSS$ (key, objectname, name_length, unit, type, code)

SRSFXS$ (key, pathname, unit, type, n—suffixes, suffix-list, basename,
suffix—used, code)

CLO$FU and CLOSFN are simplified interfaces to close file system objects by
file unit number and pathname, respectively. Their calling sequences and
operations are described more fully in Chapter 7, Text Storage and Retrieval.

SRCH$$ and SRSFXS$ both require a key value of K$CLOS to close an object.
SRCH$$ accepts only a simple objectname, and closes the named object in the
current directory. SRSFX$ can close an object anywhere in the file system
(assuming appropriate access, of course). These subroutines are fully described
in the Subroutines Reference Il: File System.

See also the description of the CLOS$A subroutine, part of the Application
Library package, given in the Subroutines Reference IV: Libraries and /0.

Deleting File System Objects

4-38 Third Edition

Any file system object that has been created, by whatever means, can also be
deleted. Not all types of objects, however, can be deleted from all interface
levels: you cannot, for example, delete an individual segment from a segment
directory from command or command function level.

Delete access is required for the directory containing the object to be deleted;
Use access is required for all superior directory levels.

Deleting File System Objects

Command Command Function Subroutine
DELETE None SGD$DL
SRCH$$

) J

J

Y

Programmer Interfaces to the File System

Deleting File System Objects

Command Command Function Subroutine
SRSFX$
FIL$DL
TSRCSS *
REMOVE_PORTAL None NAMSRM_PORTAL

* The TSRC$$ subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS is still supported, programs should use SRSFX$ beginning
with Rev. 20.2.

Deleting Objects (Command): To delete a file, file directory, segment
directory, or access category from command level, use the command:

DELETE objectname [options]

objectname is any valid form of pathname in which you have the appropriate
access rights; you can therefore delete an object anywhere in the file system.
The values that you can supply for options are described in the PRIMOS
Commands Reference Guide.

Note that there is no abbreviated form of the DELETE command.

Deleting Objects (Command Function): There is no command function
to delete a file system object. However, the DELETE command can be included
in a CPL program.

Deleting Objects (Subroutine): To delete a file system object from a
program, use one of the following subroutine calls

SGDS$DL (unit, code)
SRCHS$S (key, objectname, nam_length, unit, type, code)

SRSFXS$ (key, pathname, unit, type, n—suffixes, suffix-list, basename,
suffix-used, code)

FIL$DL (pathname, code)

The SGD$DL call is used only to delete members of a segment directory. The
program must first position to the desired segment number. See the section How
to Position a Segment Directory in Chapter §, Data Storage and Retrieval. The

Third Edition 4-39

Advanced Programmer's Guide II: File System

4-40 Third Edition

unit argument gives the file unit number on which the segment directory was
previously opened.

For SRCH$$ and SRSFXS, the value of key is K$DELE to delete an object. For
SRCHS$$, objectname is the simple name of an object in the current directory; if
the object is a directory, the deletion occurs only if the directory is empty.

These calls are described further in Chapters 7, Text Storage and Retrieval and 8,
Data Storage and Retrieval, and in Subroutines Reference Il: File System.

Removing Portals (Command): To remove a portal from command level,
use the command

REMOVE_PORTAL mount_point_pathname [-HELP)

mount_point_pathname is the fully—qualified pathname of the local directory
where the portal is mounted.

Removing Portals (Subroutine): To remove a portal by means of a
program, use the following subroutine call

NAMSRM _PORTAL (entryname, code)

NAMS$RM_PORTAL deletes a portal entry in the specified directory pathname.
This subroutine may only be used at the supervisor terminal. Figure 4-2 shows
the calling sequence of NAM$RM_PORTAL.

entryname (char(32) var) The entry that represents the portal
mount point.
code (fixed bin) The standard return code. See the next

section for a list of error codes.

J J

)

)

Y

Deleting a Portal

Programmer Interfaces to the File System

Name of Entry
That Represents
Portal Mount Point

|

CHAR (32)
VARIABLE

/

NAM$RM_PORTAL (entryname, code)

/

HALF
INT

1

Standard
Error
Code

Q04.02.D10056 3LA

Figure 4-2. Calling Sequence of NAM$RM_PORTAL

NAM$RM_PORTAL Errors:

Error Name Description

E$SCCM This routine may only be used at the supervisor
terminal.

ESWRIT You do not have access rights for this operation.

E$BNAM The entryname that you specifi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>