
P r i m e , A d v a n c e d
Programmer's
Guide II:
File System
Revision 23.0

DOC10056-3LA

Advanced Programmer's
Guide II: File System

Third Edition

William T. Carbonneau
This manual documents the software operation of the PRIMOS operating
system on 50 Series computers and their supporting systems and
utilities as implemented at Master Disk Revision Level 23.0
(Rev. 23.0).

Prime Computer, Inc., Prime Park, Natick, Massachusetts 01760

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer, Inc. Prime Computer, Inc., assumes no
responsibility for any errors that may appear in this document
The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1990 by Prime Computer, Inc. All rights reserved.
PRIME, PRIME, PRIMOS, and the Prime logo are registered trademarks of
Prime Computer, Inc. 50 Series, 400,750,850,2250,2350,2450,2455,2550,2655,
2755,2850,2950,4050,4150,4450,6150,6350,6450,6550,6650,9650,9655,9750,
9755,9950,9955,9955II, Prime INFORMATION CONNECTION, DISCOVER,
INFO/BASIC, MIDAS, MIDASPLUS, PERFORM, PERFORMER, PRIFORMA,
Prime INFORMATION, PRIME/SNA, INFORM, PRISAM, PRIMAN, PRIMELINK,
PRIMIX, PRIMEWORD, PRIMENET, PRIMEWAY, PRODUCER, PRIME TIMER,
RINGNET, SIMPLE, Prime INFORMATION/pc, PT25, PT45, PT65, PT200, PT250,
and PST 100 are trademarks of Prime Computer, Inc.

Printing History
Preliminary Edition (DOC9229-1LA) January 1985 for Revision 19.4
First Edition (DOC10056-1LA) September 1985 for Revision 19.4.2
Second Edition (DOC10056-2LA) July 1987 for Revision 21.0
Third Edition (DOC10056-3LA) June 1990 for Revision 23.0

Credits
Editorial: Thelma Henner, Mary Skousgaard
Project Development: Glenn Morrow
Technical Support: Julie Cyphers, SonyaZegarra
Illustration: Mary Easter, Carol Smith, Myron Stein
Production: Judy Gordon

How to Order Technical Documents

To order copies of documents, or to obtain a catalog and price list:

United States Customers International

Call Prime Telemarketing, Contact your local Prime
toll free, at 1-800-343-2533, subsidiary or distributor.
Monday through Thursday,
8:30 a.m. to 8:00 p.m. and
Friday, 8:30 a.m. to 6:00 p.m. (EST).

PRIME SERVICE SM

Prime provides the following toll-free number for customers in the United States needing
service:

1-800-800-PRIME

For other locations, contact your Prime representative.

Surveys and Correspondence
Please comment on this manual using the Reader Response Form provided in the back of
this book. Address any additional comments on this or other Prime documents to:

Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

///

Reading Path for PRIMOS Documentation

Book Level

PRIMOS
User's
Guide

i r

CPL
User's
Guide

PRIMOS
Commands
Reference
Guide

1

Subroutines
Reference
l - V

Language
Reference
Guides

1
1

Source
Level
Debugger
User's
Guide

SEG and
LOAD
Reference
Guide

Programmer's
Guide to
BIND and
EPFs

Advanced
Programmer'sGuide 1:
BIND and
EPFs

Advanced
Programmer's
Guide III:
Command
Environment

Advanced
Programmer's
Guide II:
File System

1r

System
Architecture
Reference
Guide

Instruction
Sets Guide

Assembly
Language
Programmer'sGuide

Introduction
for All Users

Reference
for All Users

Reference for
Programmers

Programmer
Tools

Advanced
Programmer'sGuide:
Appendices
and Master
Index

Advanced
Programmer
Information

Qpath£>100563LA

IV

Contents

About This Book

1 What Is a File System?
Data... 1-1
Storage... 1-2
Objects... 1-2
Procedures... 1-3
File Systems: Summary... 1-3

2 The PRIMOS File System
What Is the PRIMOS File System? ... 2-1
The File System Before Rev. 23.0... 2-2

Disk Trees on More Than One System ... 2-3
Limitations of Multi-rooted Name Space... 2-4

The Rev. 23.0 File System... 2-4
The Root Directory... 2-5
The Singly-Rooted File System Directory Structure ... 2-5
The Common File System Name Space... 2-7
The Name Server... 2-7
The Global Mount Table... 2-7
Logical Mounts ... 2-8
Portals... 2-8

PRIMOS File System Objects... 2-9
Naming and Accessing Objects... 2-10
Root Directories... 2-10
Physical Disks... 2-13
Disk Partitions ... 2-14
Directories... 2-15
Segment Directories... 2-15
Access Categories... 2-16
Files... 2-16

3 Accessing the PRIMOS File System
Object-naming Conventions... 3-1

Objectnames... 3-2
Pathnames... 3-2
How and When Objects Are Named... 3-5
Access Methods... 3-5

Access Control... 3-6
Attaching to a File Directory... 3-6
Access Control Lists... 3-7
Password Directory... 3-8

How and When Access Is Calculated... 3-9
Access Calculation Concepts... 3-9
Access Calculation When Opening Files... 3-11
Access Calculation When Attaching to Directories... 3-11
Access Calculation for Other Operations... 3-12

File Units... 3-13
Information Associated With a File Unit... 3-13

Opening a File... 3-16
File Unit Number Allocation... 3-17
File Unit Numbers... 3-18
File Pointers... 3-18
Positioning Files... 3-19
Truncating Files... 3-19

Closing Files... 3-19
Closing on Normal Program Termination ... 3-19
Closing on Abnormal Program Termination ... 3-20

File Attributes... 3-20
The Date and Time Last Accessed (DTA) Attribute... 3-21
The Date and Time Created (DTC) Attribute... 3-22
The Date and Time Last Modified (DTM) Attribute... 3-23
The Date and Time Last Backed Up (DTB) Attribute... 3-24
The Read/Write Lock Attribute... 3-24
The File Type Attribute... 3-25
The Dumped/Not-dumped Attribute... 3-26
The Special/Not-special Attribute... 3-27

Quotas... 3-27

4 Programmer Interfaces to the File System
Communicating With the File System ... 4-1

Commands ... 4-1
Command Functions... 4-2
Subroutine Calls ... 4-2
System Primitives ... 4-2
Arguments and Options ... 4-3

VI

Attach Points and Access Rights ... 4-4
Objectnames... 4-6
File Units and Attributes ... 4-7
PRIMOS Responses (Return Codes)... 4-8

File System Operations: An Overview... 4-9
General Requirements... 4-9
Creating Objects... 4-10
Opening Objects ... 4-10
Reading Objects... 4-10
Writing Objects... 4-11
Deleting Objects... 4-11

Access Control to File System Objects ... 4-12
Attach/ACL Requirements... 4-12
Attaching... 4-12
Access Control List (ACL) Functions... 4-15

Creating File System Objects... 4-22
Creating Portals... 4-22
Creating File Directories ... 4-24
Creating Files ... 4-26

OPENING FILE SYSTEM OBJECTS ... 4-27
Opening File Directories ... 4-27
Opening Files ... 4-29

Reading File System Objects... 4-30
Writing File System Objects ... 4-35
Closing File System Objects ... 4-37
Deleting File System Objects... 4-38

5 Search Rules
Search Rules and Search Lists... 5-1

Default Search Lists ... 5-2
Advantages of Search Rules ... 5-2
Search Rule Types ... 5-3

Administrator and System Search Rules ... 5-3
User-specified Rules... 5-4

Search List Types... 5-4
User-defined Lists... 5-4
ATTACHS... 5-5
COMMANDS... 5-7
INCLUDES... 5-8
BINARYS... 5-8
ENTRYS... 5-9

Creating and Setting Search Rules... 5-9
Creating a Search Rules File... 5-9
Setting Search Lists ... 5-10

VII

Search Rule Keywords... 5-12
The -insert Keyword... 5-12
The -system Keyword... 5-13
The -optional Keyword... 5-15
The -added_disks Keyword... 5-15
The -public Keyword... 5-17
The -static_mode_libraries Keyword... 5-17
The -primos_direct_entries Keyword... 5-17
The [origin_dir] Keyword... 5-18
The [home_dir] Keyword... 5-18
The [referencing_dir] Keyword... 5-19

Accessing Search Lists... 5-19
PRIMOS Command Environment... 5-19
CPL Programs... 5-20
Program Subroutines... 5-20
ATTACHS Invoked by Other Search Lists ... 5-21

6 Attach Points
The Initial Attach Point... 6-1
The Home Attach Point... 6-3
The Current Attach Point... 6-4

Operations That Reset the Current Attach Point... 6-5
Functions Used To Manipulate Attach Points... 6-7

The ATS Subroutine... 6-7
The ATSABS Subroutine... 6-10
The ATSANY Subroutine... 6-13
The ATSREL Subroutine ... 6-16
The ATSROOT Subroutine... 6-19
The GPATHS Subroutine ... 6-20
The SRCHSS Subroutine... 6-23

Questions and Answers About Attach Points... 6-25

7 Text Storage and Retrieval
Subroutines for Accessing Files ... 7-1
Difference Between Variable-length and Fixed-length Record Files ... 7-2

Variable-length Records... 7-3
Fixed-length Records... 7-3
Hybrid Approaches ... 1-4
Maximum Length of a File... 7-5

How to Open, Extend, Truncate, and Close Text Files... 7-5
Opening a File... 7-6
Positioning a File to End-of-file ... 7-13
Truncating a File... 7-16
Closing a File... 7-19

VIII

How to Read and Write Variable-length Text Files ... 7-23
The RDLINS and WTLINS Interfaces... 7-23
Sample Programs Using RDLINS and WTLINS ... 7-27

How To Read, Write, and Position Fixed-length Files ... 7-30
The PRWFSS Interface... 7-30
Sample Uses of PRWFSS ... 7-38

Format of a Variable-length Record File... 7-41
Format of a Fixed-length Record File... 7-42

Determining the Blocking Factor... 7-43
Calculating Record Position During Random-access Operations... 7-44

Questions and Answers About Text Files... 7-45

8 Data Storage and Retrieval
File Organization ... 8-1
Segment Directories ... 8-2

Subroutines Used to Access Segment Directories ... 8-2
How to Open a Segment Directory... 8-3
How to Position a Segment Directory ... 8-9
How to Extend a Segment Directory... 8-13
How to Open a Member File Within a Segment Directory... 8-16
How to Delete a Member File Within a Segment Directory ... 8-21
Scanning a Segment Directory... 8-23

File Directories... 8-28
Creating a File Directory ... 8-28
Opening a File Directory ... 8-32
How to Scan a File Directory ... 8-37

Reading and Writing Data Files ... 8-40
Questions and Answers About Data Files... 8-41

9 Access Control Lists (ACLs)
Subroutines That Manipulate ACLs... 9-1

Setting Access on Files and Directories ... 9-1
Creating Access Categories ... 9-2
Changing Access to a File System Object... 9-6
Setting the Access for an Object to That of Another Object... 9-6
Reading the Access for an Object... 9-8

How Programs Should Parse an ACL... 9-10
Questions and Answers About ACLs... 9-10

10 File Attributes
How to Read the File Attributes of an Object... 10-1

Example... 10-5
Setting File Attributes... 10-7

IX

11 Disk Quotas
Retrieving Information on Disk Space in Use ... 11-1

Retrieving Quota Information for a Directory... 11-1
Retrieving Quota Information for the MFD ... 11-3

Improving Quota System Performance... 11-4

12 Interprocess Communication via the File System
General Concepts... 12-1

File and System Read/Write Locks... 12-1
Caveats on Using the File System for Interprocess Communication ... 12-3

Sample Models of Communication via File System ... 12-5
Multiple Processes Creating File-based Transactions ... 12-5
Multiple Competing Servers Accessing File-based Transactions ... 12-6
Two-process Transaction Management... 12-9
Multiple Processes Accessing a Database... 12-9

Appendix
A File System Glossary... A-1

Index

About This Book

The Advanced Programmer's Guide is a four-volume series that provides
technically sophisticated information for systems-level programmers. This
series supplements basic reference information found in other PRIMOS®
manuals.
The books in this series are intended for programmers who are experienced with
the PRIMOS operating system and 50 Series™ systems. In addition, you should
be experienced in at least one high-level programming language supplied by
Prime (preferably PL/I, C, or FORTRAN-77).
The Advanced Programmer's Guide series consists of four volumes:

• Advanced Programmer's Guide I: BIND and EPFs (DOC 10055-2LA)
• Advanced Programmer's Guide II: File System (DOC10056-3LA)
• Advanced Programmer's Guide III: Command Environment

(DOC10057-2LA)
• Advanced Programmer's Guide: Appendices and Master Index

(DOC10066-4LA)
The four volumes of the Advanced Programmer's Guide can be ordered as a set
using DCP10171.

Specifics of This Voiume
This volume contains detailed technical information about the PRIMOS file
system. It describes the systems-level programmer interfaces to the file system,
including those used to attach to file system objects, to set access rights on file
system objects, and to manipulate text and data files. In addition, it describes
disk quotas, inter-process communications, and programer interfaces to the
singly-rooted file system. This volume provides information about Prime
subroutines used solely to interact with the file system.

Third Edition xi

Advanced Programmer's Guide II: File System

Specifics of the Series
The Advanced Programmer's Guide series divides information among the
volumes of the set as follows:

• Volume I: BIND and EPFs describes Executable Program Formats (EPFs),
including registered EPFs, and describes the EDIT_BINARY binary file
editor.

• Volume II: File System (this volume) describes the PRIMOS File System.
It provides detailed information about the File Server, access rights, search
rules, and data and text manipulation in file system objects.

• Volume III: Command Environment describes how to use EPF
initialization routines and how to invoke a user program as a command,
subroutine, or function from a user program or from PRIMOS command
level.

• Appendices and Master Index provides appendix material applicable to all
of the volumes in this document set. It lists the standard error codes used
by PRIMOS, along with their messages and meanings. It describes the
new features of recent PRIMOS revisions that may be of interest to
advanced programmers. Finally, it provides a Master Index to all four
volumes of the Advanced Programmer's Guide series.

This series describes the lowest-level interfaces supported by PRIMOS and its
utilities. It is designed for systems-level programmers who are designing new
products, such as language compilers, data management software, electronic
mail subsystems, utility packages, and so on. Such products are themselves
higher-level interfaces, typically used by other products rather than by end users,
and therefore must use some or all of the low-level interfaces described in this
series for best results. Most of the information in this series deals with interfaces
to PRIMOS that are typically used only in small portions of a product and with
overall product design issues that should be considered before coding begins.

Higher-level interfaces not described in this guide include:
• Language-directed I/O
• The applications library (APPLIB)
• The sort packages (VSRTLI and MSORTS)
• Data management packages (such as MPLUSLB and PRISAMLIB)
• Other subroutine packages

All the above interfaces are described in other manuals, such as language
reference manuals and the Subroutines Reference series.

xii Third Edition

About This Book

References

Users of this series should be familiar with the PRIMOS User's Guide
(DOC4130-5LA), which contains information on system use, directory structure,
the condition mechanism, CPL files, ACLs, global variables, and how to load
and execute files with external subroutines. New information for Rev. 23.0 can
be found in the PRIMOS User's Release Document (DOC10316-1PA). You
should also have an understanding of the architecture of Prime systems, as
described in the 50 Series Technical Summary (DOC6904-2LA).
You should use the Advanced Programmer's Guide along with the standard
PRIMOS references: the PRIMOS Commands Reference Guide
(DOC3108-7LA updated by RLN3108-71 A) and the five-volume Subroutines
Reference series:

• Subroutines Reference I: Using Subroutines (DOC10080-2LA updated by
UPD10080-21A)

• Subroutines Reference II: File System (DOC10081-2LA)
• Subroutines Reference III: Operating System (DOC10082-2LA)
• Subroutines Reference IV: Libraries and I/O (DOC10083-2LA)
• Subroutines Reference V: Event Synchronization (DOC10213-1LA

updated by UPD10213-11A)
For a complete list of available Prime documentation, consult the Guide to Prime
User Documents.

Third Edition xiii

Advanced Programmer's Guide II: File System

Prime Documentation Conventions

The following conventions are used throughout this document. The examples in
the table illustrate the uses of these conventions.

Convention Explanation

Uppercase In command formats, words in
uppercase bold indicate the names of
commands, options, statements, and
keywords. Enter them in either
uppercase or lowercase.

Italic Variables in command formats, text,
or messages are indicated by lower
case italic.

Abbreviations If a command or option has an abbre
viation, the abbreviation is placed
immediately below the full form.

Brackets Brackets enclose a list of one or
more optional items. Choose none,
one, or several of these items.

Braces Braces enclose a list of items.
Choose one and only one of these
items.

Braces within Braces within brackets enclose a list
brackets of items. Choose either none or only

one of these items; do not choose
more than one.

Monospace Identifies system output, prompts,
messages, and examples.

Underscore In examples, user input is under
scored but system prompts and out
put are not.

Hyphen Wherever a hyphen appears as the
first character of an option, it is a
required part of that option.

Ellipsis An ellipsis indicates that you have
the option of entering several items
of the same kind on the command
line.

Parentheses In command or statement formats,
you must enter parentheses exactly
as shown.

Example
SLIST

LOGIN user-id

SETQUOTA
SQ

LD -b r i e f !
-SIZE J

CLOSE

BIND

filename}II ALL

(pathn<options
ame

address connected

OK, RESUME MY PROG

SPOOL -LIST

pdev-1 [...pdev-n]

DIM array (row, col)

xiv Third Edition

Data

What Is a File System?

It is hard to imagine a large corporation, a small business, or even an individual
being able to do any business at all without some form of data. Something as
simple as an address book is one kind of data that an individual might use. A
checkbook is another. Businesses use data in the form of mailing lists, accounts
receivable, accounts payable, cash on hand, and many other collections of words
and numbers in their daily transactions. In order to use these words and numbers
in any efficient and meaningful way, they must be organized in some fashion,
and there must be tools by which their owners can manipulate them. The
function of a file system is to provide the organization and the tools to store and
use information by means of a computer.

The first characteristic of a file system, then, is that it is a collection of data —
information in the form of letters, digits, and symbols arranged into useful
groups of words and numbers. If the groups are put into some fixed sequence,
such as a last name, a first name, a middle initial, and a telephone number, each
group can be called a field. A field is usually designated as either alphanumeric
(consisting of a mixture of letters, digits, and symbols) or numeric (consisting
mostly of digits, but possibly including a plus or a minus sign, a decimal point,
one or more commas, and perhaps a currency symbol). Other kinds of fields,
such as pure alphabetic or binary, are recognized by some programming
languages.
A record is the basic unit upon which most file systems operate. A number of
fields can be combined into a structured element known as a data record. There
are also unstructured records, which consist of strings of alphanumeric
information of varying lengths; these are, strictly speaking, also data records, but
to distinguish between structured and unstructured records, the unstructured
records can be called text records. As a programmer, you will be using both
kinds of records: you will write programs in the form of text records; your
programs will most likely deal with data records.

Third Edition 1-1

Advanced Programmer's Guide ll: File System

Storage

Objects

The second characteristic of a file system is that its data has been placed in some
kind of storage from which it can be retrieved when needed. Many forms of
storage exist: punched cards, paper tape, magnetic tape, and various forms of
magnetic disks. In these chapters we deal only with storage on disks.

Having a collection of data arranged into fields and records and stored on a disk
is a big step toward organizing the data. It is really all that you absolutely need
to store and retrieve data. Given a set of commands that the computer
understands, you could at this point successively retrieve records until the
desired one is found, and then do some kind of operation on it.
But this is a tedious task, and there might be more than one class of records upon
which you want to perform different kinds of operations. For example, the
telephone number records would serve a purpose different from that of, say,
accounting records, and for reasons of efficiency or privacy, it would be useful
to keep these two classes of records separate.
A useful file system should be able to segregate different classes of data into
different groups, or objects, the most basic of which is the file. The previous
paragraph hinted at the existence of two files, one a list of names and telephone
numbers, and the other a list of names and accounting information. A company
employee whose job is to do telephone surveys of customers could retrieve their
telephone numbers from the first file without having to read and skip, or even
being able to see, any of the information about their accounts in the second file.
You can also imagine a second level of segregation, in which files, as well as
records, might be grouped together to serve some particular purpose. A
company with a nation-wide customer base, for example, would maintain
account files of all of its customers, but might want to operate on them on a
state-by-state or regional basis. One approach to this task would be to cluster
the files for each state or region into another kind of object: a catalog containing
the names of the files in the cluster. These objects serve as directories to the
objects contained in them, and indeed, some file systems, including the PRIMOS
file system, call them just that. Directories, along with a suitable language,
enable identical actions to be performed on several files by simply addressing the
directory that contains them.
File systems provide other kinds of objects, whose purposes are to ease the
burden of dealing with large collections of data, controlling access to them, and
increasing the efficiency of operating on them. What PRIMOS provides is
described in Chapter 4, Programmer Interfaces to the File System. How you as a
programmer use them is explained in the remainder of this volume.

1-2 Third Edition

What Is a File System?

Procedures

No matter how sophisticated it may be, data organization is only an idea, useless
without some way to implement it, and then to act on the organized data. For
these purposes, a set of tools, or procedures, is needed. Procedures, written into
programs, enable you to create file system objects, write data into them, read
data from them, control access to them, and perform other related functions on
both the objects themselves and the information contained in them.

File Systems: Summary

No matter how elementary or sophisticated your work is, you need a file system
to perform that work. File systems come in many forms, with a variety of
capabilities ranging from simple file creation, reading, and writing to the
construction of highly complex database with hierarchical structures and
intricate access control mechanisms. But the ultimate goals of any file system are
simple: to organize data, to enable and simplify access to it, and to exercise
control over who can do what to it
The next three chapters explain the elements of the PRIMOS file system and
how they work together to achieve these goals.

Third Edition 1-3

The PRIMOS File System

2

This chapter describes the structure and components of the PRIMOS file system.
The topics covered include

• What is the PRIMOS file system?
• The file system before Rev. 23.0 (multi-rooted hierarchy)
• The Rev. 23.0 file system
• The singly-rooted hierarchy
• The common file system name space
• PRIMOS file system objects

What Is the PRIMOS File System?

The PRIMOS file system is Prime's implementation of a collection of objects
and procedures that let you create a file storage structure. You manipulate this
file storage structure in order to fulfill your data storage, access, and security
needs.
Each Prime machine has one or more physical disks that store data. Each
physical disk is logically divided into one or more sections called disk partitions.
For example, one partition would hold the tools for administering the system,
another would hold user directories, another would hold data management
databases, and so forth. Each disk partition, in turn, is made up of directories. A
directory is the logical "file drawer" that holds the files. The files themselves
hold the data.
The PRIMOS file system theory and structure is described in more detail in the
sections following. The first section following presents a useful review of the
file system structure before Rev. 23.0. The remainder of the chapter deals with
the PRIMOS file system at Rev. 23.0.

Third Edition 2-1

Advanced Programmer's Guide II: File System

The File System Before Rev. 23.0

Before Rev. 23.0, PRIMOS organized a directory structure like an inverted tree.
The pre-Rev. 23.0 directory tree consists of a root (the disk partition), branches
(the directories), and leaves (your files — the objects of most of your work with
the file system). Each disk partition is the source of a tree whose components
have distinct names. See Figure 2-1 for an illustration of a machine with the
pre-Rev. 23.0 directory tree structure.

System SYS1

Disk Partition

Directories

Files
I02J01X> 10056 JIA

Figure 2-1. Pre-Rev. 23.0 Directory Tree Structure

In the above example, the tree hierarchy of one of the disk partitions on System
SYSl is shown. This partition is called <TOOLS> and contains two directories,
FORMULAE and PROGRAMS; PROGRAMS contains files. The directories
and files that reside under <TOOLS> use its name as a starting point for their
own names. This, in turn, determines where these objects are located:

• <TOOLS>FORMULAE

• <TOOLS>PROGRAMS

• <TOOLS>PROGRAMS>TIDES.PASCAL

• <TOOLS>PROGRAMS>ELLIPSE.F77

• <TOOLS>PROGRAMS>GRAVITY.CC

2-2 Third Edition * >

The PRIMOS File System

Typically, a system contains more than one partition, each one having a separate
starting point with directories and files under it. The name of each object under
that disk partition is ultimately qualified by the disk. That is, the pathname of
each begins with the root name, and is said to be a fully-qualified pathname.

Disk Trees on More Than One System

Many sites have more than one system, or machine, with users having to utilize
data on more than one machine. These users must use more than one tree to
accomplish their tasks. Consider two different disk tree hierarchies on two
different systems. See Figure 2-2 for an illustration of two machines with the
pre-Rev. 23.0 directory tree structures.

System SYS1 System SYS2

Disk Partition Disk Partition

Directories

Files
I02JO2D10O563LA

Figure 2-2. Pre-Rev. 23.0 Directory Tree on Two Machines

The illustration shows a disk tree on two different systems: <USERS> on System
SYS2 and <TOOLS> on System SYSl. Each disk is a separate and distinct root
(starting point) for the names (and thus the locations) of their subordinate file
system objects.
The collection of names of all the file system objects is known as the file system
name space. The name of every object in the pre-Rev. 23.0 tree hierarchy is
defined by its disk partition. Therefore, the type of configuration illustrated in
Figure 2-2 is called a multi-rooted name space.

Third Edition 2-3

Advanced Programmer's Guide II: File System

Limitations of Multi-rooted Name Space
In a multi-rooted name space, the manner in which you named and referenced
every file system object was limited by that object's physical location. Consider
another example based on Figure 2-2 in the previous section. Suppose user
KEPLER, on System SYS2, has been told to copy a file called
<TOOLS>PROGRAMS>ELLIPSE.F77, which resides on System SYSl.
However, KEPLER does not know that, even though he can access System
SYSl, the remote disk <TOOLS> was never added to his system's local disk
table. If he attempts to copy ELLIPSE.F77, the COPY command returns an
error:

OK, COPY <TOOLS>PROGRAMS>ELLIPSE.F77 *>==
Not found. Unable to attach *x<TOOLS>PROGRAMS" (copy)
ER!

In Figure 2-2, System SYSl and System SYS2 have been networked because
users on both machines have common tasks to perform. However, user KEPLER
encounters problems performing his tasks because there is no transparent access
to file system objects between these two machines. Disks on a pre-Rev. 23.0
system must be administered manually, and added manually. KEPLER must now
wait for the remote disk to be added to his system's disk table, or obtain a remote
user ID, before he can proceed.
This is symptomatic of the limitations of the pre-Rev. 23.0 file system in a
multi-machine environment. Even though your machine is part of a network,
tasks involving other machines can be cumbersome because your view of the file
system is local, encompassing only your machine.
Also, there is the danger of inadvertent diskname duplication; PRIMOS does not
inform you if there are two identical disknames in the same network
environment. This means that a fully-qualified pathname may not be unique.

The Rev. 23.0 File System

A number of changes have been made to the PRIMOS file system. These
changes allow a collection of 50 Series machines to share what is known as a
common file system name space. Among the advantages of configuring a
common file system name space are

• Administration of disks is made easier, since remote ADDISK commands
are no longer needed.

• Distributed applications are easier to build, since pathnames uniquely
reference file system objects regardless of which machine the reference
came from.

2-4 Third Edition

The PRIMOS File System

• The limit on the number of disk partitions which can be referenced from a
single machine is increased from 238 to 1280.

Your System Administrator might decide not to configure a common file system
name space, but in order for PRIMOS to support the new scheme, there are some
file system changes that affect everyone at Rev. 23.0. The most notable of these
changes is the singly-rooted file system hierarchy. This hierarchy is
implemented by means of a root directory and changed pathname syntax and
semantics of pathnames.

The Root Directory
At Rev. 23.0, the PRIMOS file system has been modified to have a single root
directory. This root directory, designated as "<", represents a level higher than
the MFD in the file system hierarchy. It is the starting place for interpreting
pathnames. The root directory contains only directories, which correspond to the
MFDs of local and remote disk partitions. Therefore attaching down from the
root directory places a user in the MFD of a specific disk partition.
The root directory has many of the characteristics of other directories, yet is
special in a few ways. Like other directories, you can attach to the root and list
its contents. However, it cannot be deleted or modified. The only way to add or
delete entries in the root is to use the ADDISK and SHUTDN commands,
discussed in the Operator's Guide to System Commands.

The Singly-Rooted File System Directory Structure
Like the multi-rooted directory structure, the singly-rooted file system directory
structure is also organized like a tree: it has a root (the root), branches (the
directories), and leaves (the files). See Figure 2-3 for an illustration of this
structure.

Third Edition 2-5

Advanced Programmer's Guide II: File System

< Root Directory

Directory Directory

f GALILEO J f NEWTON J f KEPLER)

Files 102D3DIO0S631A

Figure 2-3. Singly-rooted Directory Tree Structure

The MFD of each of the disk partitions appears as a directory under the root
directory. Partitions on one machine or more than one machine are under the
root. Examine the contents of the root by issuing the ATTACH and LD
commands, as follows:

OK, ATTACH <
OK, LD

< (LU access)

321 Directories.

AAAAAA AAAAAB AAAAAC AAAAAD
AAAAAE AAAAAF AAAAAG AAAAAH
AAAAAI AAAAAJ AAAAAK AAAAAL
AAAAAM AAAAAN AAAAAO AAAAAP
AAAAAQ AAAAAR AAAAAS AAAAAT
AAAAAU AAAAAV AAAAAW AAAAAX
AAAAAY AAAAAZ BAAAAC BAAAAD
BAAAAE BAAAAF BAAAAG BAAAAH
BAAAAI BAAAAJ BAAAAK BAAAAL
—More—Q

OK,

2-6 Third Edition

The PRIMOS File System

The Common File System Name Space
At Rev. 23.0, System Administrators can create a common file system name
space for a collection of machines. Having a common file system name space
means that all disk partitions on a specified collection of machines are visible to
every machine in that collection. You can reference file system objects within
that collection (provided that you have the proper PRIMENET RFA access and
the proper ACL rights). DSM defines the collection of machines which share a
common file system name space.
All machines which share the file system name space see a common and
complete view of the file system hierarchy, because PRIMOS replicates the root
directory on each machine. Since the starting point for interpreting pathnames at
Rev. 23.0 is the root directory, having identical root directories on a collection of
machines means that fully-qualified pathnames always mean the same thing.

The Name Server
The root directory is replicated by starting up the process server called Name
Server, new at Rev. 23.0. The Name Server replicates the root directory among a
DSM-defined collection of machines. Your System Administrator creates a
common file system name space on a pre-determined collection of machines by
using DSM to define which machines are in the same name space, then starting
the Name Server on each of those machines.
The foundation for the common file system name space boundaries is the DSM
config group. Configuring DSM over the network means dividing it into groups
of machines, none of which overlap. Each group has a consistent picture of
which machines are in the group. This view of the network is exactly what is
needed by the Name Server. Thus, when each Name Server is started, it must
consult DSM to determine which other machines have Name Servers it must
consult with.

The Global Mount Table
The Rev. 23.0 file system interprets pathnames based on the root directory, not
the disk table. Underlying the root directory is a new PRIMOS database which
contains the total list of disk partitions and portals which a given machine can
reference. (Portals are discussed in the next section.) This database is known as
the Global Mount Table (GMT).
For every disk partition or portal in the local file system name space, the GMT
lists

• on which machine each disk or portal is located

• where in the common file system name space the disk or portal is
"grafted" (its pathname).

Third Edition 2-7

Advanced Programmer's Guide II: File System

To obtain this information, use the LIST_MOUNTS command. This command
has a number of options which allow users to relate pathnames to specific disks
and systems, machine names to disks, and disk names to system names. For
more information about LIST_MOUNTS, see the PRIMOS User's Release
Document and the Operator's Guide to System Commands.

Logical Mounts
At Rev. 23.0, disk partitions have expanded capabilities, thus adding to their
flexibility in the common file system name space. It is possible to

• add a disk partition to the root with a name that is up to 32 characters long,
for example, <A_REALLY_LONG_DIRECTORY_NAME. This is in
keeping with the fact that partitions are treated as directories in the
common file system name space.

• graft a disk partition over any existing directory in the tree hierarchy
except the MFD. The directory over which the partition is mounted is
called the mount-point directory, and its contents are thereafter
inaccessible until the grafted partition is shut down. One advantage of
adding partitions that are subordinate to other partitions is that it is easier to
extend the storage capacity of systems whose applications are written to
use fully-qualified pathnames. Another advantage is that a directory tree
can expand as much as is required.

In both of the above cases, the partition is called a logical mount. The System
Administrator adds a partition as a logical mount by using a new option,
-MOUNT_PATH, of the ADDISK command. The -MOUNT_PATH option is
described in the Operator's Guide to System Commands, and logical mounts are
discussed in more detail in the System Administrator's Guide, Volume I: System
Configuration.

Portals
At Rev. 23.0, a Network Administrator can partition a collection of Prime
machines into one or more common file system name spaces by using the Name
Server. Remember that a common file system name space consists of all the disk
partitions on all of the machines that are members of the same DSM config
group, and that disk partitions are shared by all machines in the common file
system name space. To reference a disk partition on a remote machine, however,
it is necessary to use a portal. A portal acts as a gateway between name spaces,
allowing you to transparently perform operations upon file system objects in
other name spaces (provided that the ACLs are set correctly and that the target
partition is not labeled as private).

2-6 Third Edition

The PRIMOS File System

A portal is a directory which has been transformed so that references to it are
redirected to a directory on a remote machine. There are two types of portals,
and each type affects where the target of the portal is:

• A root-directed portal, the more powerful of the two types, redirects
references to the root directory of another machine. The remote machine
can be any machine outside your file system name space as long as it
resides on the network.

• A disk-directed portal redirects references to the MFD of a specified
disk. This type of portal is defined primarily for compatibility with earlier
revisions of PRIMOS which do not have a root directory.

Portals can only be created by using the ADD_PORTAL command on the
supervisor terminal. The command must specify a fully-qualified pathname of
an existing directory which is to be transformed into a portal, and also must
specify the node name of a machine which is the target of the portal. Remove a
portal from a directory by using the REMOVE_PORTAL command at the
supervisor terminal. Programmers with privileged access can add or remove
portals using the NAM$AD_PORTAL and NAM$RM_PORTAL subroutines,
respectively. For more information about these subroutines, see Chapter 4,
Programmer Interfaces to the File System. For more information about
ADD_PORTAL and REMOVE_PORTAL, see the Operator's Guide to System
Commands.

PRIMOS File System Objects

The remaining portion of this chapter describes in detail the objects that make up
the PRIMOS file system. The next sections describe

• Naming and accessing objects
• Root directories
• Physical disks
• Disk partitions
• Directories
• Segment directories
• Access categories
• Files

Third Edition 2-9

Advanced Programmer's Guide II: File System

Naming and Accessing Objects
Each object must have a name so that it can be uniquely identified. The person
who creates an object assigns it a name. Disk partitions and directories are
usually assigned names by a System Administrator. You, the programmer, assign
your own names to objects that belong to you: user directories, segment
directories, access categories, and files.
Once you start using the tree structure, you will want to store some data in it, and
reuse the data that you have stored. The PRIMOS file system supports three
access methods, or ways of reading and writing data: the Sequential Access
Method (SAM), the Direct Access Method (DAM), and the Contiguous Access
Method (CAM)
You will want to have some control not only over who has access to your files,
but also over what kinds of things those who do have access can do to your files.
Other users who share your system will want to exercise the same control over
theirs. Typically, you might want all members of your department to be able to
read your files, a select few to be able to change them or add to them, and you
alone to be able to create and delete them. The PRIMOS file system gives you a
variety of access control tools to establish whatever degree of control you wish
over any, some, or all of the objects that belong to you. These tools involve user
identifications and a set of permissions, or access rights, which together make
up Access Control Lists (ACLs). An older form of access control, the directory
password, is still supported, but its use is declining in favor of the access control
list.

Note The tree structure is made up of file system objects. An object is a collection of data that
has its own name, the name by which you can refer to the object when you want to do
something with it. The paragraphs that follow describe each of these objects in detail.

Root Directories
At the top of the file system tree structure is the root directory. This is the
starting point for referencing all file system objects within that tree. The root is
represented by the root character, <, which is the lesser-than mathematical
symbol, also called the right-angle symbol. A fully-qualified pathname is an
absolutely unique name across the common file system name space for those
systems on which the Name Server is running.
You can reference the root by itself using the ATTACH command or the AT$
subroutine.

2-10 Third Edition

The PRIMOS File System

OK, ATTACH <
OK, LAC

ACL protecting ' '<Current d i r e c t o r y > " :
$REST: LU

OK, LD

< (LU access)

321 Directories.

ADDNTS ADMFNL AQQLID ARDFNU
ARDHIV AUX1 BAVFL BOMDOD
BTD1 DADDB2 DKLIST DMQFNW
DOMAND DOMMSW DOMQRJ DORF
DQGR11 DQGR12 DQGR13 DQGR14
DQGR15 DQGR16 DQGR17 DQGR18
DQGR19 DQGR20 DQGR21 DQUDOD
DQUGR1 DQUGR4 DQUGR5 DQUGR6
DQUGR7 DROM1 DSF&G DSWINT
DSWQRJ DSWTST DATA1 DATA2
DATA3 DBGRQ DBGRQ2 DBGRQ5
DBMSRD DDMDFV DIDT2X DISDVR
DMDQRF DMGSRD DMGTST DMROAM
DMYGRQ DMYSRD DMYTST DRAF/D
DRAF/I DRAFTW DSAG DUMQM
FDMS36 FMS1 FNGDB FNGDB1
FNGDB2 FNGDB3 FNGDB4 FNU1
FNU2 FNU3 FNUDA2 FNUDB
FNVIR1 FNVIR2 FNVIR3 FNVIR4
—More—■q

OK,

A leading < character in a pathname signifies a fully-qualified pathname. The
root symbol is acceptable by itself as a valid pathname, but it is not a valid
filename. You can generally use the root directory as any other directory. Note
that only the ADDISK and SHUTDN commands can change the contents of the
root.
Root Syntax Change: The new root syntax satisfies the pre-Rev. 23.0
syntax rules as a fully-qualified pathname. However, the pathname
<TOOLS>PROGRAMS>ELLIPSE.RUN is interpreted differently at Rev. 23.0:

Third Edition 2-11

Advanced Programmer's Guide II: File System

Pre-Rev. 23.0 The pathname is interpreted as the file
ELLIPSE.RUN which resides in the top-level
directory PROGRAMS, which in turn resides in the
disk partition with the name TOOLS.

Rev. 23.0 The pathname is interpreted as the file
ELLIPSE.RUN which resides in the directory
PROGRAMS, which in turn resides in the directory
TOOLS, which resides in the root directory (<).

Root Characteristics: The root directory has special characteristics because
it is both a replicated directory and it is also the starting point of pathname
interpretation in the common file system name space. These characteristics are
summarized as follows:

ACL protection The ACLs on the root directory itself are
$REST:LU; no other objects may be created in the
root since it is the starting point of the common file
system name space. The only way to modify the
contents of the root is with either the ADDISK or
SHUTDN commands.

Open/close operations You cannot directly open the root; a SRCH$$ <
operation fails since < is not a valid filename. The
root can be indirectly opened by calling SRSFX$ <
or by attaching to the root using AT$ROOT and
using SRSFX$ with a zero-length name. The root
can be closed by calling SRSFX$, CLO$FU, or
CLO$FN.

Entries in the Root Directory: All root-directory entries are directories
which were created when the disk partition was added with the ADDISK
command. These root-directory entries generally take and maintain the
attributes of the MFD of that disk partition when the ADDISK operation was
done. The exceptions to this rule are the following:

• The DTM attribute is set to the time that the ADDISK coinmand was
issued, regardless of the DTM setting on the MFD.

• The DTA is not set.
• The ACL which protects the MFD and the access which is computed from

it are determined dynamically. Therefore, the ACL and computed access
associated with the root-directory entry are always the same as the ACL
and computed access for the associated MFD.

• If the root-directory entry is created as a result of a remote ADDISK
command (which is only if the Name Server is not started), the attributes
contain either default or non-applicable values.

2-12 Third Edition

The PRIMOS File System

Physical Disks
Disk partitions are configured on physical disks. PRIMOS supports three kinds
of physical disks: Cartridge Module Devices (CMDs), Fixed Media Devices
(FMDs), and Storage Module Devices (SMDs). Each of these is available in
several storage capacities; the total range of usable storage space provided by the
three types is from approximately 30 usable megabytes for the smallest CMD to
approximately 759 usable megabytes for the largest FMD.
Storage space is divided into surfaces, tracks (or cylinders), and sectors, the
numbers and capacities of which are physical properties of the devices, and vary
from one type of device to another. All of the devices and their capacities and
physical characteristics are described in detail in the Operator's Guide to File
System Maintenance.
Each physical disk, when it is first introduced to the PRIMOS operating system,
is initialized, or formatted, by a System Administrator or System Operator,
using the MAKE command (described in the Operator's Guide to File System
Maintenance). One function of formatting is to create, on the physical disk, one
or more logical disks, or partitions, by defining the starting surface number and
the number of surfaces that make up the partition. (A partition may not be
smaller than one surface.)
Some physical disks can contain a single partition, while others either are
required to be or operate more efficiently when configured into two or more
partitions. The actual number of partitions that a physical disk ultimately
contains depends both on its physical characteristics and on the uses to which it
is put.
The System Administrator's Guide, Volume I: System Configuration, discusses
the considerations involved in the planning and execution of disk partitioning.
Another function of formatting is to create a file known as the Disk Record
Availability Table (DSKRAT), which enables the file system to keep track of
which physical records contain data and which physical records are available to
have data stored in them. Each physical record on the disk is represented in this
file by one bit, whose value is 0 if the record is in use, and 1 if the record is
available. The DSKRAT file typically occupies several contiguous physical
records, starting at track 0, sector 2, on the first surface on the disk. The
DSKRAT file has the same name as the disk partition.

Note A physical record is not the same as the data or text records mentioned earlier, these are
called logical records. Unless otherwise noted, the term record in this book refers to
logical records.

Another function of formatting is to provide the disk with a bootstrap file
(named BOOT). This file contains machine-executable instructions that initiate
the loading of the PRIMOS operating system, enabling PRIMOS to be loaded
and started from any disk connected to the computer system. The bootstrap file

Third Edition 2-13

Advanced Programmer's Guide II: File System

consists of a single physical record, located at track 0, sector 0 on the first
surface of the disk.
During formatting, the MAKE program may detect a "bad" sector, that is, a
sector having a flaw that makes it impossible to record data into that sector
reliably. When this happens, MAKE creates a file called the badspot file
(named BADSPT) in which are recorded the locations of any such sectors that it
encounters. The file system refers to this file in order to avoid attempts to write
data to unreliable sectors.
The DSKRAT, BADSPT, and bootstrap files are largely invisible and of little
direct interest to you as a programmer. The file system uses DSKRAT and
BADSPT automatically, and the bootstrap record is normally invoked only by
the System Operator.
The final object that formatting creates is the Master File Directory (MFD),
beginning at track 0, sector 1, on the first surface of the partition.

Disk Partitions
A disk partition, which may also be referred to as a logical disk or a volume, is
a logical section of the physical disk which is demarcated for a specific use. It
normally appears directly below the root in the root hierarchy and in this event is
called a root entry; however, logical partitions may also be grafted onto the tree
hierarchy at a point in the tree that is lower than the root.
The logical disk partition is treated as a directory by the Rev. 23.0 file system.
You can get a list of disk partitions by using the LIST_MOUNTS command, or
using the NAM$L_GMT subroutine, described in the next section.
You can reference a disk partition (root entry) using the ATTACH command or
the AT$ or AT$ANY subroutines:

OK, ATTACH <DIRONE
OK, LD

<DIRONE>MFD (LUR access)

3 Files.

B A D S P T B O O T D I R O N E

2 Directories.

M F D R P T S

OK,

2-14 Third Edition

The PRIMOS File System

Notice that the pathname <DIRONE returned the pathname <DIRONE>MFD;
The two pathnames are synonymous.

Directories
A directory is a collection of file system objects assembled for a common
purpose.
System or Project Administrators often assign directories to individual users as
origin directories, although lower-level directories may be assigned just as well
for this purpose. (An origin directory is the starting point for a user to access
the file system.) The objects that can be immediately subordinate to a user
directory are lower-level directories, segment directories, access categories, or
files. In addition to pointing to the objects it contains, a directory also includes
access control and quota information for them.
Not all directories are assigned as origin directories. On the command partition,
for example, a number of directories immediately under the root entries may
contain objects such as command files, records of system usage, and other kinds
of data that are related to system operation.
Any directory that is one or more levels below a root-directory entry is a
lower-level directory, or simply a directory. Directories can point to the same
kinds of objects that root entries can point to, including more lower-level
directories. Directories can be nested to many levels.
While the nesting level limit depends on such factors as the physical capacity of
the disk on which the directories reside and on quotas that may have been
established on their superior directories, the real determining factor may be the
length of the fully-qualified pathname, which is limited to 256 characters. User
access to and interaction with a lower-level directory whose pathname contains
more than 256 characters is uncertain, because the pathname is truncated.
(Pathnames are explained in the section entitled Object-naming Conventions in
Chapter 3.)

Segment Directories
The directories described so far all fall into a class known as file directories.
There is another class known as a segment directory, used primarily to contain
program segments created by the PRIMOS SEG command, and multiple-index
files such as those created by the MIDASPLUS or Prime INFORMATION
subsystems.
Segment directories can be contained in file directories just as any other file
system object can. But they can point only to numbered data files and segment
directories, and cannot contain the names of lower-level directories or other
objects such as data files or access categories. Their main function is to increase
the efficiency of certain utility and application programs through the use of

Third Edition 2-15

Advanced Programmer's Guide II: File System

numbered, rather than named, objects. Once the identifying number of an object
is made known to PRIMOS, it is more efficient to locate and operate on than is
an object identified by a pathname or a filename.
You can create a segment directory explicitly from a terminal or use PRIMOS
subroutines, expressly designed for this purpose, in any program that is intended
to manipulate segmented files. You can see the evidence of a segment directory's
creation by inspecting the contents of the file directory that contains it, but its
actual creation is transparent to you as you sit at your terminal.
Refer to Chapter 8, Data Storage and Retrieval, for further information on
segment directories and to Subroutines Reference II: File System, and to the
SEG and LOAD Reference Guide for information on segmented programs.

Access Categories
An access category is a directory entry that contains an access control list.
When you specify that a certain set of users have specific rights to operate on
one of your file system objects, that list of users and rights (the ACL) takes up
space in the directory that contains the object. If a number of objects require the
same list, creating that list for each individual object becomes wasteful, and it is
useful to be able to specify this common list by defining it once and having it
reside in only one place. The function of the access category is to contain the
list; the access to each object can then be set by referring to the name of the
access category.
The subject of access control and ACLs is explained in more detail in the section
entitled Access Control in Chapter 3 of this manual.

Files
A file is an object that contains a collection of user data. In this broad sense, any
file system object can be thought of as a file, since all objects presumably
contain information useful to their users. A root entry, for instance, has
information that its user, the file system, uses in its search for file system objects.
But a file, from the point of view of the user, contains no pointers to further
subordinate objects; it is a leaf at the end of a branch in the tree structure.
There are system files and user files. System files are created by PRIMOS or its
administrators and operators for use by the operating system. Some of them can
be read by users for purposes such as listing users on the system and getting
status information of various kinds. But because of the access controls usually
applied to them and their directories, few system files, if any, can be changed or
deleted by the ordinary user.
User files, on the other hand, are created by you and other users to fulfill the
needs of your application programs. You normally create structured data files by
running your application programs, or text files by using a text editor or word

2-16 Third Edition

The PRIMOS File System

processing application. You can control access to your files as tightly or as
loosely as you wish to satisfy your security needs and those of any group(s) to
which you may belong.

r

r
^ T h i r d E d i t i o n 2 - 1 7

Accessing the PRIMOS File
System

3

This chapter describes the concepts you the programmer need to know in order
to access the PRIMOS file system. Topics covered include

• Object-naming conventions
• Pathnames
• Access control

Object-naming Conventions

r

Every directory, access category, and file must have an identification that is
unique within the entire collection of objects known to the file system. This
requirement appears, at first glance, to place a heavy burden on you — that of
knowing about the name of every existing object any time you want to assign a
name to a new object. But PRIMOS eases this burden in much the same way as
a mailing address enables the Postal Service to locate a particular John Smith: by
using a hierarchical access path to John Smith through a state, city, street name,
and house number. It is this access path that is unique, even though some of the
individual components may not be.
The mailing address is interpreted by reading geographical elements in a specific
order, from the most inclusive to the least inclusive. The file system's access
path is formed and interpreted in precisely the same way, by combining the
names of file system objects in order, from the most to the least inclusive. The
resulting string of names (plus some separators to show where one name ends
and another begins) is called a pathname, and, for the file system, it is only this
pathname that must be unique.
Thus, the only uniqueness requirement you must satisfy is that, within a given
directory, each object must have a unique name. This is the same as saying that
in a given city there can be only one Washington Street (but there could be a
Washington Street in every city in the United States).

Third Edition 3-1

Advanced Programmer's Guide II: File System

Objectnames
An objectname is a string of up to 32 characters selected from the following set:

letters (A through Z)

digits (0 through 9)

special characters _#$-.*&/

An objectname cannot begin with a digit or contain any spaces. Also, you should
avoid names beginning with _, -, &, and $, because they can cause confusion in
certain commands and syntaxes. You can use the underscore (_) to represent a
space if you want your objectname to consist of two or more words. Use the
period (.) for separating objectname components.
An objectname can consist of one or more components. When there are two or
more components in an objectname, each is separated from the next by a period.
Components can be used for whatever purpose you wish, such as to identify
several objects as being related to each other in some way. As a programmer,
you use components as suffixes to source-text filenames to identify the language
used in writing your programs (for example, .FTN for FORTRAN programs, or
.CBL for COBOL programs). PRIMOS provides subroutines whose functions
are to manipulate suffixes. Refer to the PRIMOS User's Guide for an
explanation of components and for a list of suffixes that Prime software
recognizes.
Although the file system allows up to 16 components in an objectname, two or
three are usually sufficient for most practical applications. In any case, remember
that an objectname, including all components and their periods, cannot be more
than 32 characters long.

Pathnames
A pathname is a string of objectnames representing the access path that the file
system follows to get to a specific object. There are several kinds of pathnames,
detailed in the following paragraphs.
Fully-qualified Pathname: From the file system's point of view, an
object's pathname contains the name of each directory level that must be crossed
to get to the desired object. Such a pathname is called a fully-qualified
pathname.
The fully-qualified pathname begins with the root directory, represented by the
lesser-than mathematical symbol (<). Following the root is the disk partition,
also called the root-entry directory, since the Rev. 23.0 file system treats disk
partitions directly below the root as directories. After the disk partition, you

3-2 Third Edition

Accessing the PRIMOS File System

typically find the names of directories progressively narrower in scope until you
reach the one containing the desired object. The absolute pathname ends with
the name of an object. A pathname cannot be more than 256 characters long.
The name of the root is the < symbol, and each subsequent objectname is
separated from the next by a > symbol. Following is a typical absolute pathname:

<DIRECTORY>DIRECTORY>... >OBJECTNAME

Relative Pathname: As a terminal operator or a programmer, you often
need to supply only part of an absolute pathname: the part that follows the name
of the directory you are currently working in. This kind of pathname is called a
relative pathname; it is relative to tlie directory you are in. It can be used
because the file system keeps track of the elements of the absolute pathname that
precede and include the name of this directory. Most commands that you
invoke from your terminal, as well as many of the file system subroutines you
write into your programs, allow you to use relative pathnames.
You use a relative pathname whenever you want to work on an object that is
subordinate to the directory you are currently in, but not immediately
subordinate to it; that is, when one or more directory levels exist between the one
you are in and the object you want to address. The form of a relative pathname
is

*>LOWER-LEVEL_DIR> ... >OBJECTNAME

Here the asterisk (*) represents the part of the pathname that the file system
"remembers," and when it is combined with the elements that you supply
explicitly, the result is an absolute pathname that leads from the root to the
object. The part of the pathname represented by the asterisk is called the home,
or working, directory pathname; the directory itself is the home, or working,
directory. If your home directory is BRANCH 1, the home directory pathname
represented by the asterisk is <FOREST>BEECH>BRANCHl. The part of the
pathname that you supply after the asterisk to get to the file LEAF6 in directory
BRANCH8 is >BRANCH8>LEAF6, giving the following relative pathname:

*>BRANCH8>LEAF6

This, in turn, is interpreted by the file system as the absolute pathname:

<F0REST>BEECH>BRANCH1>BRANCH8>LEAF6

Simple Pathname: When the object you want to address is immediately
contained in your home directory, you can use an even simpler form of
pathname, known as a simple pathname. A simple pathname consists of only
the name of the object you want to work with; it does not contain any > symbols.
Objectname, entryname, and simple filename are terms used synonymously with

Third Edition 3-3

Advanced Programmer's Guide II: File System

simple pathname. If, as in the last example, your home directory is BRANCH 1,
and you want to do some operation on the directory BRANCH8, you can use the
simple pathname BRANCH8.

Note There is an exception to the interpretation of a simple name when you use the ATTACH
command. If, using the example above, you attempt to attach to BRANCH8 by issuing
the command

ATTACH BRANCH8

the ATTACH command interprets BRANCH8 as an unqualified, or full, pathname
(described below) rather than the simple pathname of the subordinate directory
BRANCH8. The result is that PRIMOS searches for a top-level directory of that name,
and in all likelihood will fail to find it. To attach to the lower-level directory
BRANCH8, you would use a relative pathname:

ATTACH *>BRANCH8

Unqualified Pathname: An unqualified pathname is one in which the first
element that you specify is a top-level directory. For example, an unqualified
pathname might be

BEECH>BRANCH 1>TWIG4

An unqualified pathname is a partial pathname which is completed when the
ATTACHS search rule finds the first element of the pathname. The file system
searches all of the active disk partitions that are visible to your system to find the
first occurrence of that first element. If your system is part of a common file
system name space or a part of a network, all visible disk partitions on all of the
active systems are searched. Local disks are searched first, in order of logical
disk number, and then remote disks are searched in the same manner. This can
take some time. (You can limit the scope of such a search, or change the order in
which disk partitions are searched, by modifying the ATTACHS search list.
Search lists are described in Chapter 5, Search Rules.) The search ends when the
first top-level directory with the specified name is found. That top-level
directory, and any intervening lower-level directories specified in the pathname,
are then followed to the desired object.

Note With the advent of the common file system name space, the optimum setting of system
search rules to reduce search time becomes even more important: the disks that are used
most frequently by users on your system should head the search list. If you feel that your
system search rules could be more efficient, contact your System Administrator, or refer
to the System Administrator's Guide, Volume I: System Configuration.

3-4 Third Edition

Accessing the PRIMOS File System

There are three points you must understand about a file system search using an
unqualified pathname:

• Once a top-level directory with the specified name is found on any disk,
the search terminates.

• If the desired object and all subsequent directories specified in the
pathname exist under that directory, PRIMOS performs whatever operation
you requested on the object

• The implication of this file system search method is that, if you want to use
a full pathname and be sure of finding the object you want to operate on,
all of the objects named in the pathname must exist within the directory
that begins the pathname, and the directory that begins the pathname must
be unique in your name space (and on any other systems that may share a
network with your system).

How and When Objects Are Named
You assign a name to a file system object when you create it; how you create it
depends on the kind of object you are creating.
A text file such as a memo or a source program is normally created by using an
editor program, and is named by specifying a filename the first time you ask the
editor to store it. Different editors have different ways of doing this, documented
in their respective manuals and user's guides; storage commands usually take the
form of a FILE, STORE, SAVE, or WRITE.
Application-related data files are usually created by a user program that executes
an open file subroutine. If it does not find the name of the file it is asked to
open, the subroutine creates the file and assigns the given name to it. The
subroutine call also contains information as to the type of file to be created, and
whether it is to be opened for input, output, or both.
File directories, lower-level directories, and access categories can be created
either by executing a subroutine in a user program or by using a PRIMOS
command at a terminal.

Segment directories are created by various application programs that manipulate
segmented files. User programs can call subroutines to create segment
directories.

Access Methods
PRIMOS provides three means of file access: the Sequential Access Method
(SAM), the Direct Access Method (DAM), and the Contiguous Access Method
(CAM). In these access methods, the file appears as a linear array of words
indexed by a current position pointer.

Third Edition 3-5

Advanced Programmer's Guide II: File System

Access Control

A SAM file enables your program to read or write a number of halfwords
beginning at the pointer, which is advanced as the halfwords are read or written.
File system subroutines enable you to position the pointer anywhere within an
open file, and to read and write data sequentially from that point. File data can
be transferred anywhere in the addressing range. When a file is closed and
reopened, the pointer is automatically returned to the beginning of the file.
A DAM file also appears to be a linear array of halfwords. This method,
however, has faster access times in positioning operations, since PRIMOS keeps
an index to allow fast random positioning. Subroutine calls to manipulate SAM
and DAM files are identical.
A CAM file contains groups of 2048-byte records that are contiguous; that is,
the records in a CAM file are not fragmented across the disk. The groups of
contiguous records are called extents and are indexed by that file's extent map
and it occupies the first record in the file. Within each extent, the records are
ordered sequentially. CAM files use fewer pointers than do DAM files, and
access time is much faster since the records are not fragmented. CAM files do,
however, require additional memory since one extent map resides in memory for
each open CAM file.

Two requirements must be met before your program can operate on a file system
object:

• Your program must be attached to the file directory that contains the
desired object, and, so that this can happen,

• Your program's user must have at least Use access to that directory

Attaching to a File Directory
You can attach your program to the directory containing the desired object in one
of two ways:

• Explicitly, if you invoke the ATTACH command specifying the pathname
of the file directory before you invoke your program

• Implicitly, if you do not explicitly attach to the file directory, but supply
any form of pathname other than a simple objectname when you invoke
your program

When you explicitly attach to a file directory by using the ATTACH command,
that directory becomes your home directory. You can then invoke your programs

3-6 Third Edition

Accessing the PRIMOS File System

using simple objectnames as arguments; your programs will locate their target
objects provided they are immediately contained in that directory.
For example, if you write a program called COUNT to count the number of lines
in a text file, and install it in the directory MYDIR.MEMOS, one way you can
invoke it is

ATTACH MYDIR.MEMOS
RESUME COUNT CHARITY

Since the COUNT program was invoked with the simple objectname CHARITY
as its argument, COUNT looks in the home directory MYDIR.MEMOS,
established by the ATTACH command, for the file CHARITY.
You do not always need to attach explicitly to a file directory before invoking
your programs; they can still operate on objects outside the home directory if
you supply the object's relative, full, or absolute pathname rather than its simple
name. Taking the COUNT program again as an example, and still assuming the
same home directory, you could invoke it in the following way:

RESUME COUNT INIT DIR>LOGIN.CPL

For this invocation, COUNT has to go to a directory INIT_DIR, outside the
home directory, to locate the file LOGIN.CPL. To do this, it attaches
temporarily to the outside directory by means of a current attach point; the
target directory is called the current directory.
If you want to enable your programs to operate in both of the ways shown in
these examples, you must use the SRSFXS subroutine, which is capable of
searching for objects outside as well as within the home directory. The SRCHSS
subroutine can search only in the home directory; if you use it in a program, and
the target object is outside your home directory, you must attach to the directory
containing the object before invoking the program, as in the first example.
The intent of the current attach point is that the attachment is in effect only for
the duration of the program's execution. When the program terminates, the
attach point should revert to the home directory. This is especially important if
the program does not terminate normally; in order to provide a consistent result
in cases of abnormal termination, most Prime software resets the current attach
point to the home directory whether it terminates normally or abnormally.
Attach points and the subroutines that manipulate them are described in more
detail in Chapter 6, Attach Points.

Access Control Lists
As stated earlier, users must have access to all directory levels leading to the
objects they are working on, as well as to the objects themselves. The means by

Third Edition 3-7

Advanced Programmer's Guide II: File System

which you as a programmer are given access, and by which you can control
access, to the various directories and files involved in your daily work are clearly
explained in the PRIMOS User's Guide. As a programmer of utilities and
applications for other users, however, you need to be aware of the kinds of things
your programs can and should do to enable those users to control access to the
objects these programs create and use.
PRIMOS provides a set of subroutines that you can write into your programs to
enable them to manipulate access control lists (ACLs) in precisely the same way
as you can by issuing ACL-related commands at your terminal. For example, if
you write a program that constructs a database for a group of users, it is
particularly useful for that program to be able to establish a database ACL for
that group of users at the time the database is created. Or, consider a utility
program that creates new files at various times, all of which should be identically
protected. Using subroutine calls, this program can create an access category to
which each new file is linked when it is created.
An access category, while it takes more disk space than a single access control
list (about as much as two average ACLs), saves disk space when the same ACL
is to protect more than two objects; this is because any number of objects can be
linked to the access category once it is created. Your program can make these
links when it creates its files, after it checks to see whether the access category
already exists.
You can use an access category to synchronize the access to multiple objects
when rights are added or removed from the access category's ACL: whenever a
new right is added or an old right is removed, the change applies to all objects
protected by the access category, removing the need to update each object's ACL
individually.
The access rights that you can assign to your own file system objects (using
PRIMOS commands) and that your programs can assign to their objects (using
access control subroutines) are all fully described in the PRIMOS User's Guide.
You can specify ALL to include OPDALURWX. (If some future rev. of
PRIMOS supports new access rights, you will not get them automatically when
you read in your file that has been assigned ALL. You will have to reassign
ALL or add the new rights individually.)
Access control subroutines can deal with both individual users and groups of
users. Your System or Project Administrator can define a user group (whose
groupname begins with a period, such as .DBUSER) consisting of the user
identifications of all of the users of a particular utility or application program.
Your programs can use the access control subroutines to grant or deny access to
these groups as well as to individuals.

Password Directory
In an older form of file access control, PRIMOS allows a limited set of access
rights to be specified on a per-file basis. A file directory can be given an owner

3-8 Third Edition

Accessing the PRIMOS File System

password and a non-owner password and a set of rights for each: R (read), W
(write), and D (delete). This form of protection is giving way to the more
comprehensive ACL mechanism, and will not be further described in this book.
Details can be found in the PRIMOS User's Guide, as can procedures by which
you can convert the older form to the ACL form.

How and When Access Is Calculated

In most situations, users need not be concerned about when access is actually
calculated by PRIMOS. However, there are some subtleties of the ACL
mechanism that the advanced user should be aware of. This section discusses

• Access calculation concepts
• Access calculation when opening files
• Access calculation when attaching to directories
• Access calculation for other operations

Access Calculation Concepts
For a given file system operation, there are two times that relate directly to the
ACL mechanism:

• When access is read
• When access is used

For the most part, reading and using occur at the same time. A sample case is
the deletion of a file. When you delete a file, PRIMOS first reads the access for
that file, and then it uses that access to determine whether or not you may delete
the file.
When you attach to a directory, however, the access is read once. It is then used
immediately to determine whether or not you may attach to the directory. If you
are allowed to attach, PRIMOS remembers the access it read for the directory.
Subsequent operations within and upon that directory may reuse the access that
PRIMOS read when you first attached. Therefore, if you attach to a directory,
and then change the access for that directory, you will find that for certain
operations the access change has not taken effect. The access information read
for a home or current directory is not discarded until you attach away from the
directory.
The following example illustrates an effect of this behavior.

Third Edition 3-9

Advanced Programmer's Guide II: File System

OK, ATTACH COGENT
OK, CREATE SENOR
OK, ATTACH COGENT>SENOR
OK, LIST_ACCESS

"<Current directory>" protected by default ACL (from "<Xl>COGENT"):
COGENT: ALL
$ R E S T: L U R

OK, LIST_ACCESS COGENT>SENOR
"COGENT>SENOR" protected by default ACL (from "<Xl>COGENT"):

COGENT: ALL
$ R E S T: L U R

OK, LD

<Xl>COGENT>SENOR (ALL access)
1 record in this directory, 1 total record out of quota of 0.

No entries selected.

OK, SET_ACCESS COGENT>SENOR COGENT:U -NO_QUERY
OK, LIST_ACCESS

ACL protecting "<Current directory>":
COGENT: ALL
$ R E S T: L U R

OK, LIST_ACCESS COGENT>SENOR

ACL protecting "COGENT>SENOR":
COGENT: U
$REST: NONE

OK, LD

<X1>C0GENT>SEN0R (ALL access)
1 record in this directory, 1 total record out of quota of 0.

No entries selected.

OK, ATTACH COGENT>SENOR
OK, LD
Insu f fic i en t access r i gh t s . (cu r ren t_d i r ec to r y) (l d)
ER!

In this example, LIST_ACCESS commands are invoked at different times to
illustrate the difference between the home directory and the same directory when
referenced explicitly by pathname. In the first two invocations, LIST_ACCESS
reports the same access when the directory is referenced as the home directory
and when it is referenced by pathname.

3-10 Third Edition

Accessing the PRIMOS File System

Then, without changing the home attach point, you set the access to the home
directory so that you have only Use access. Among other things, this removes
List access from the ACL on the SENOR directory.
At this point, the third LIST_ACCESS command on the home directory shows
that you still have ALL access to SENOR. A fourth LIST_ACCESS command
on the same directory (using the pathname) reports that you have only Use
access. This discrepancy is illustrated further by the fact that you can still type
LD and see the directory contents (or lack thereof).
However, when you reestablish SENOR as the home attach point, PRIMOS
reads the new ACL for this directory. This results in your having only Use
access to the home directory, which prevents you from examining the directory
contents using LD. It is when you attach again to the lower-level directory that
the new ACL takes effect.
Similarly, the new ACL takes effect for any other users that attach to the
directory, but not for users who were already attached to the directory when the
ACL on it was reset.

Access Calculation When Opening Files
When opening a file or segment directory, the access is read and used when the
open operation first takes place. The access is not used again during read or
write operations. The access is used if a change-access operation is performed
(by using the SRCHSS subroutine with the KSCACC key). However, the access
is not read again in this case. Therefore, once a file is open on a file unit,
changing the access of the file does not affect any operations performed on that
file unit up until the time that file unit is closed. (See the File Units section,
following, for an explanation of file units.)

Access Calculation When Attaching to Directories
When you attach to a directory, as either a home or a current directory, PRIMOS
reads and uses the access on the directory during the attach operatioa
Subsequent operations on the home or current directory use the access without
reading it again, as illustrated earlier. However, subsequent operations on the
same directory when the name of the directory is specified causes PRIMOS to
read the access for the directory to check the access rights for those operations.
Once PRIMOS has read the access for the directory, it does not update any
access it has already read for the origin, home, or current directories.
The following example illustrates these points.

Third Edition 3-11

Advanced Programmer's Guide It: File System

OK, ATTACH COGENT
OK, CREATE SENOR
OK, ATTACH COGENT>SENOR
OK, ED
INPUT
A TEST FILE.

EDIT

FILE TEST_FILE
OK, LIST_ACCESS TESTFILE

"TEST_FILE" protected by default ACL (from "<Xl>COGENT"):
COGENT: ALL
$ R E S T: L U R

OK, SET_ACCESS COGENT>SENOR COGENT:ALURW
OK, LIST_ACCESS TESTFILE

"TEST_FILE" protected by default ACL (from "<Xl>COGENT"):
COGENT: ALL
$REST: LUR

OK,LIST_ACCESS COGENT>SENOR>TEST FILE

"COGENT>SENOR>TEST_FILE" protected by default ACL
(from "<Xl>COGENT>SENOR"):

COGENT: ALURW
$REST: NONE

OK, DELETE COGENT>SENOR>TEST_FILE
Insufficient access rights. Unable to delete "COGENT>SENOR>TEST_FILE'
(de le te)

OK, DELETE TEST_FILE
OK,

Here, an attempt to delete a file by pathname fails because the access on its
parent directory denies Delete access to the user. However, because the user was
attached to the parent directory before the access was changed to deny Delete
access, deleting the file as a member of the home directory succeeds.

Access Calculation for Other Operations
Aside from opening files and attaching to directories, most file system operations
cause PRIMOS either to use the access for the current directory or to read and
use the access for the appropriate file system object just once. For example,
renaming a file causes PRIMOS to use the access for the current directory and
make certain that both Delete and Add rights are granted.

3-12 Third Edition

Accessing the PRIMOS File System

File Units

A file unit is an open channel to a file, a segment directory, or a file directory.
Through this channel, your programs read data from and write data to a file
system object. Associated with a file unit is a file unit number, that is, a
numeric pseudonym for the object's name. This number is assigned either by the
program (static allocation) or by PRIMOS (dynamic allocation) when the
program opens the file (see File Unit Number Allocation, later in this section). It
uniquely identifies the file unit for a particular process (user).
Generally speaking, your program performs the following operations to operate
on a file system object:

1. Opens the file: establishes an open file unit and assigns a file unit number.
2. Accesses the file: the open file unit enables operations on the file.
3. Closes the file: revokes access to the file.

Information Associated With a File Unit
As described previously, a file unit identifies an open file system object.
Internally, PRIMOS maintains information on each open file unit.
Current Object Position: The current object position points to the
location in the file system object at which the next data read or write begins. For
files, the position points to a particular halfword in the file. For segment and file
directories, the position points to a particular entry in the directory.
The current object position is adjusted automatically by PRIMOS as data is read
from or written to an object. In addition, your program may change the current
object position without reading or writing data by using the PRWFSS subroutine,
described in Chapter 7, Text Storage and Retrieval.
For files, the current object position is always between 0 and the end-location of
the file, or end of file, inclusive. The end-of-file location is the same value as
the number of halfwords in the file; when a file is first created, the end-of-file
location is 0.
To append new data to the end of an existing file, first position the file unit to the
end-of-file location, which represents the position of the next halfword to be
appended to the file. (If you do not know the end-of-file location, simply
position to the largest possible halfword number, 2147483647. Although
PRIMOS returns an error code of ESEOF to indicate that the end of file has been
reached, PRIMOS sets the current object position to the end-of-file location.)
At the end-of-file position, writing data to the file automatically extends the file
as the data is written; an attempt to read data at this point returns the error code
ESEOF (end of file).

Third Edition 3-13

Advanced Programmer's Guide II: File System

Open Mode: The open mode determines what operations are valid for an
open file unit A read operation requires the file unit to be open for reading; a
write operation requires the file unit to be open for writing; both operations are
valid if the file unit is open for both reading and writing. Your program sets the
open mode when it first opens a file. Your program can open a file for reading,
for writing, or for both reading and writing. To do this, the user running your
program must have the corresponding access to the target object. For files and
segment directories, the required access is Read, Write, or both Read and Write,
to match the actions for which they are opened; for file directories, which are
open only for reading, List access is required.
A special open mode, known as virtual memory file access read (VMFA-read),
also exists. The PRIMOS executable program format (EPF) mechanism uses
VMFA-read to map an EPF into virtual memory from the disk. A file unit open
for VMFA-read cannot be read or written by a program.
When your program tries to open a file unit to an object for a specific action such
as writing, another file unit may already be open to that object for the same
purpose. In such cases, PRIMOS checks the open mode requested by your
program against the read/write lock then in effect for the object. Your program's
open request is rejected if the lock specifies that only one user at a time can do
what the open request intends to do, and

• Another user is already using the object for that purpose, or
• Your program has already opened the object on another file unit for the

same purpose.

See the section entitled The Read/Write Lock Attribute, later in this chapter for
the meanings of the possible values for the lock.
Your program can change the open mode of a file if the new open mode does not
conflict with the access or read/write lock controls described above. The
CHSMOD subroutine, described in Subroutines Reference II: File System,
performs this function.
Object Type: The type of the object open on a file unit determines what kinds
of operations are valid on that file unit. Object types include

• SAM, DAM, and CAM files, for which most operations (except directory
operations) are valid, such as data read and data write
SAM and DAM segment directories, for which only segment directory
operations arc valid, such as position to segment directory member and
delete segment directory member
File directories, for which only file directory operations are valid, such as
read next directory entry and read named directory entry

3-14 Third Edition

Accessing the PRIMOS File System

Access categories cannot be opened on a file unit; they are restricted in size, so
they are read and written in single operations and do not require an associated
file unit.
If your program attempts an operation that conflicts with the object type,
PRIMOS returns one of several error codes:

• E$DIRE (Operation illegal on directory), indicating an attempt to perform
an operation valid only for SAM or DAM files on a segment or file
directory

• ESNTSD (Not a segment directory), indicating an attempt to perform an
operation valid only for segment directories on a file or file directory
ESNTUD (Not a top-level directory), indicating an attempt to perform an
operation valid only for file directories on a file or on a segment directory

•

Because these object types are all opened in the same way, these errors are
returned only when your program attempts to perform the invalid operation,
typically after opening the object. To enable your program to detect an
inappropriate object type earlier, have it check the type value returned by the
subroutine it calls to open the object. If the type value is not appropriate to the
intended operations, your program should close the file unit and report an error.

Object Modified: An object-modified flag is initially reset when a file unit is
first opened (before the object is modified). When the first data write is
performed on the object, this flag is set (after the object has been modified).
When the file unit is later closed, PRIMOS uses the object-modified flag to
determine whether the date and time last modified (dtm) field for the object
should be updated. If the flag is not set, PRIMOS does not update the dtm field.
Therefore, simply opening a file for writing and then closing the file does not
cause the dtm field to be updated. (The date and time last accessed field is set
under this and other circumstances described later in this chapter.) A program
must actually write data to the file and then close the file to update the dtm field.
Disk Shut Down: A disk-shut-down flag is initially reset (meaning the disk
is not shut down) when a file unit is first opened. If a disk partition is shut down
by the System Administrator or System Operator (by using the SHUTDN
command), the disk-shut-down flags for all file units open to objects on that
disk are set (meaning the disk is shut down). After that, any attempt by a
program or user to continue performing operations on an affected file unit is
rejected with the error code ESSHDN (disk has been shut down).
Calculated Access to Object: When your program opens an object,
PRIMOS calculates the user's access to the file to make sure that the user can
operate on the file. PRIMOS records the resulting summary of the user's access
to the file in the information for the corresponding file unit. A later attempt by
your program to change the open mode of the file is checked against this copy of
the user's access, not against the current access on the object itself (which may
have changed since the file unit was opened).

Third Edition 3-15

Advanced Programmer's Guide ll: File System

Opening a File

Read/Write Lock: PRIMOS records the read/write lock of an open file unit
in the information for that file unit so that it can quickly determine whether
record-level locking for writes is necessary. If at least two file units are open to
the same object for writing, or one is open for reading and another is open for
writing, PRIMOS must ensure that simultaneous operations on those file units
result in predictable behavior. Because such a situation is permissible only when
the read/write lock is set to an appropriate value, PRIMOS checks the read/write
lock for the file unit to determine how careful it must be in guarding against
simultaneous access during a read or write. The more permissive the read/write
lock setting, the more care PRIMOS has to take, and the lower the performance
of each read or write operation will be.

Your program may open a file for reading only, for writing only, for both reading
and writing, or for VMFA-read (EPFs only). If your program opens a file for
reading only, your program can read the file, but cannot change the file. If your
program opens a file for writing only, your program can write the file, but cannot
read the file.
To open a file, your program calls one of many system subroutines, described in
Chapter 7, Text Storage and Retrieval, and Chapter 8, Data Storage and
Retrieval. Each subroutine provides different functionality for opening a file, but
they all provide the following services.

• Search the specified file directory (if a pathname is specified) or the
current directory (if a simple objectname is specified) to see whether the
requested filename is there.

• Create the file if the filename is not present and your program is opening
the file for writing or for both reading and writing. If the filename is not
present, and your program is opening the file for reading only, these
subroutines return a "not found" indicator.

• Determine a file unit number. The file unit number is the only identifier
PRIMOS uses for transferring data to and from the file.

• Set up tables and initialize buffers in the operating system.

If your program opens a file for writing only, or for reading and writing, your
program may change that file. If the system subroutine creates a new file at the
time of opening, no information is contained in the file.
Because open-for-write files are subject to alteration (deliberate or accidental),
your program should keep files closed except when they are being used. Open
files absorb system resources; they may also be unavailable to other users.
However, frequent open and close operations also absorb system resources;

3-16 Third Edition

Accessing the PRIMOS File System

therefore, try to balance your program's use of files so that open and close
operations are infrequent without resulting in file units being open but inactive
for long periods of time.
When the user is communicating with the file structure through one of the
standard Prime translator or utility programs, files are referred to by name only.
PRIMOS, or your program, handles the details of opening or closing files and
assigning file units. For example, the user can enter an external command such
as ED FILEl, which loads and starts the text editor and takes care of the details
of assigning the file FILEl to an available unit for reading or writing.

File Unit Number Allocation
PRIMOS allows two ways of allocating file unit numbers:

• Dynamic allocation
• Static allocation

Dynamic allocation allows a program to leave to PRIMOS the task of selecting
an available file unit number. When opening a file, a program specifies dynamic
file unit allocation, and PRIMOS returns to the program the file unit number it
has assigned to the open file. The program then uses this file unit number when
reading or writing the file.
Static allocation is performed by a program. When opening a file, a program
passes the file unit number to PRIMOS. If the specified file unit is already in
use, PRIMOS rejects the attempt to reuse the file unit; otherwise, PRIMOS uses
the program-defined file unit number to read or write the file.
Dynamic allocation is the recommended method for most programs. Its
advantages are as follows:

• You do not have to worry about different parts of your program having
conflicting file unit number requirements.

• Your program can call another program that also uses dynamic unit
allocation without causing file unit number conflicts.

• A very large number of file units (32761) are available when using
dynamic allocation, whereas static allocation allows a maximum of 126 file
units open simultaneously for a given user.

• Your program is guaranteed exclusive use of file units.

Static allocation offers very few advantages; these rarely outweigh any of the
advantages of dynamic allocation:

Third Edition 3-17

Advanced Programmer's Guide II: File System

You can design several programs that are to run together as a package so
that they use agreed-upon statically allocated file unit numbers; thus, these
programs do not have to pass dynamically allocated file unit numbers back
and forth to each other.
Your program can use a numerical constant as the file unit number, rather
than requiring the use of a variable.
Prime translators do treat certain file unit numbers specially (when enabled
using the -ALLOW_PRECONNECTION option), so your program may
use these file unit numbers if it invokes Prime translators.

File Unit Numbers
File unit numbers 1 through 127 may be specified for static allocation by your
program. File units 127 through 32761 are returned by PRIMOS only when
your program requests dynamic unit allocation. Your program cannot specify a
file unit number between 128 and 32761 (inclusive) when opening a file system
object.
Unit -4 is the command output file unit. Your program should not read data
from or write data to this file unit. Your program may read the current object
position of this file unit, or use GPATHS to obtain the full pathname of the
command output file.
Unit -1 is the current directory; unit -2 is the home directory; unit -3 is the
origin directory. These three units are usually open to the corresponding
directories. You may use this knowledge to perform certain operations
efficiently. For example, to read the directory entries in the user's origin
directory, your program can simply call DIRSRD using the KSINIT key the first
time for file unit -3. It does not have to attach to the origin directory (thus
preserving the current attach point) or to open the origin directory for reading
(thus saving time and a file unit).

File Pointers
Once your program has opened a file, a file pointer is associated with the file
unit. To understand how the file pointer works, imagine that the halfwords in a
file are serially numbered beginning at halfword number 0. The file pointer is
the number of the next halfword to be processed in a file. It identifies the point at
which data are read from and written to the file. As your program reads and
writes halfwords, the associated file pointer is incremented once for each
halfword read or written. If your program reads a line of text, for example, the
file pointer is positioned, after the read, to the beginning of the next line of text
in the file.

3-18 Third Edition

Closing Files

Accessing the PRIMOS File System

Positioning Files
Your program can move the file pointer backward and forward within a file
without moving any data. This is called positioning a file, and is described in
more detail in Chapter 7, Text Storage and Retrieval. The value of a file pointer
is called the position of the file. Positioning a file to its beginning is often
called rewinding a file.

Truncating Files
Your program can shorten a file by truncating it. When your program truncates
a file, the part of the file that is located at or beyond the file pointer is eliminated
from the file, and an end-of-file mark is placed at the pointer position. If the file
pointer is positioned at the beginning of the file, all of the information in the file
is removed, but the filename remains in the file directory. If the file pointer is
positioned at the end of the file, the truncation has no effect.
PRIMOS handles the returning of disk space occupied by truncated records to
the free record pool on the disk.
Many programs truncate a text file just before closing it if they have written new
information to the file. Because text files are typically variable-length record
files, as described in Chapter 7, Text Storage and Retrieval, they are usually
written from beginning to end; even if only one line in a file is changed, the
entire file is rewritten in case the new line is longer or shorter than the line it
replaces. In the process of rewriting an entire file, a program may write a new
version that is shorter than the old version. Truncating the file ensures that old
data is not left at the end of the new file.

Your program should always close a file before terminating execution, whether
termination is normal or abnormal. Closing files is described in more detail in
Chapters 7, Text Storage and Retrieval and 8, Data Storage and Retrieval.

Closing on Normal Program Termination
Your program may close a file unit, also referred to as closing a file, when it
finishes its processing of the file. When your program does this, the file unit
number and the corresponding table areas in the operating system are "cleaned
up" and released for reuse by another program or user.

Third Edition 3-19

Advanced Programmer's Guide II: File System

File Attributes

Closing on Abnormal Program Termination
When control returns to PRIMOS by way of an error condition, files are not
normally closed. To provide this functionality in your program, have your
program close any file units it opened when it detects a fatal error. (Of course,
your program should still report the original error, be careful to separate error
code variables used to clean up after an error from error code variables used to
detect original errors.)
You may also choose to have your program make an on-unit for many error
conditions, as described in the Subroutines Reference III: Operating System. If
one of these conditions occurs while your program is running, your program can
close any file units it has opened and then continue to signal the error condition.
Typically, this is done for the QUITS condition, signaled when the user types
CONTROL-P or BREAK.
Note, however, that although closing file units upon recognition of the QUITS
condition has advantages, a distinct disadvantage is that the user cannot restart
your program by issuing the START command. If the user attempts this, the
program continues executing where it was stopped until it attempts to use one of
the closed file units. At this point, an error indicator is returned to the program.

PRIMOS maintains a set of file attributes for every file, segment directory, file
directory, and access category on disk. The file attributes of a file system object
can be read and written by a user program that has sufficient access to the parent
directory of the target object. File system attributes include

• The date and time the object was created
• The date and time the object was last accessed
• The date and time the object was last modified
• The date and time the object was last backed up
• The read/write lock of the object
• The file type (which once established can only be read)
• The dumped/not dumped state of the object
• The special/not special state of the object (which is set at disk initialization

and can only be read)

3-20 Third Edition

Accessing the PRIMOS File System

Note The date and time created (dtc) and date and time last accessed (dta) attributes may
appear in directory entries beginning at PRIMOS Rev. 20.0. These expanded entries are
accessed through the use of a hash table. At Rev. 20.0, MAKE creates all directories as
hashed ACL directories unless an option is specified that creates a pre-Rev. 20.0 disk. A
Rev. 20.0 system can use pre-Rev. 20.0 disks, as can a pre-Rev. 20.0 system. A system
running pre-Rev. 20.0 PRIMOS can not use local Rev. 20.0 disks, but it can use remote
Rev. 20.0 disks.

The Date and Time Last Accessed (DTA) Attribute
The date and time last accessed (dta) attribute of a system object or its parent is
modified under various circumstances as depicted below.

Table 3-1.

Object DTA
Modified?

Parent DTA
Modified?

Close an open entry (from read or write)

Segment directory subfile
After read from write-protected disk

Write attribute

dump
dtm

dtb

dtc*

dta*

other (delete switch, protection, rwlock, logical type,
truncated bit)

Read any attribute

Tape backup (MAGSAV)

Tape restore (MAGRST - Set to time of restore)
Size

Remote size

Pre-Rev. 20.0 system operating on Rev. 20.0 hashed directory

Remote backup (MAGSAV)
D r y Y

Y

Third Edition 3-21

Advanced Programmer's Guide II: File System

Table 3-1. (continued)

Object DTA Parent DTA
Modified? Modified?

Pre-Rev. 20.0 system operating on Rev. 20.0 hashed directory N N

Pre-Rev. 20.0 system operating on Rev. 20.0 hashed directory N N

Note * dta and dtc can be set only by members of the user group named .BACKUPS. Backups
performed by members of this group are recorded in the date and time last backed up
(dtb) attribute.

Format of the Date and Time Last Accessed Attribute: The format of
the dta attribute of a file system object is declared in PL/I as follows:

del 1 dta,
2 date,

3 year bit(7), /* Starting in year 1900. */
3 month bit(4), /* January is month 1. */
3 day bit(5), /* The first day of the month is day 1. */

2 time fixed bin(15); /* (Seconds since midnight)/4. */

As shown in this declaration, the dta attribute occupies one fullword, or two
halfwords. The first halfword is organized as follows:

YYYYYYYMMMMDDDDD

Here, YYYYYYY is the year minus 1900, MMMM is the month (January is month
1), and DDDDD is the day of the month.
The second halfword is the number of seconds past midnight divided by four.
The remainder portion of the result of the division is discarded. Therefore, the
granularity of the dta field is four seconds.

The Date and Time Created (DTC) Attribute

The date and time created (dtc) attribute contains the date and time that a file
system object was created.
Format of the Date and Time Created Attribute: The format of the dtc
attribute of a file system object is the same as that for the date and time last
accessed attribute.

3-22 Third Edition

Accessing the PRIMOS File System

The Date and Time Last Modified (DTM) Attribute

Whenever a change occurs in the file system data or structure, the date and time
last modified (dtm) attribute of the file system object involved is set to the
current date and time. User programs may use the dtm attribute of file system
objects to determine when the objects were most recendy modified.
User programs may also change the dtm attribute of a file system object to any
date and time.
How PRIMOS Sets the Date and Time Last Modified Attribute: The
dtm attribute of a file system object is set depending upon the object type, as
shown below.
T y p e D T M A t t r i b u t e S e t
File When the file is first created, and whenever the file

is closed after data in the file has been modified or
after the file has been truncated. (The dtm attribute
of a file is not changed when any other attributes of
the file are changed.)
When the segment directory is first created, and
after the segment directory is closed when any of its
members have been created, deleted, modified,
truncated, or renamed, or when its size is changed.
When the directory is first created, when one of its
members is created, deleted, or renamed, or when
certain attributes of one of its members are changed
by a user program. Changes to all attributes except
the dumped bit, the date and time last modified, and
the date and time last backed up cause the updating
of a parent directory's dtm field. The parent
directory's dtm field is also updated when the access
control for one of its members is changed.
When the access category is first created, or when
its contents are changed. Changing the contents of
an access category does not, however, update the
date and time last modified field of any objects
protected by that access category.

The purpose of the dtm attribute is to record the change of any file system data
or structure somewhere in the file system itself. Thus, creating a new file sets
the dtm attribute for both the file and its parent directory. Subsequently deleting
the file also updates the dtm attribute for its parent directory. Although the net
result may be that the contents of the directory are unchanged, the recent dtm
attribute of the parent directory is an indicator that activity has taken place
within the directory.

Segment directory

File directory

Access category

Third Edition 3-23

Advanced Programmer's Guide II: File System

Format of the Date and Time Last Modified Attribute: The format of
the dtm attribute of a file system object is the same as that for the date and time
last accessed attribute.

The Date and rime Last Backed Up (DTB) Attribute
The date and time last backed up (dtb) attribute contains the date and time that a
file system object was last backed up by a member of the BACKUPS group.
Format of the Date and Time Last Backed Up Attribute: The format
of the dtb attribute of a file system object is the same as that for the date and time
last accessed attribute.

The Read/Write Lock Attribute
One of the responsibilities of the PRIMOS file system is to ensure against
attempts by several user processes to read and write one file simultaneously. For
example, if user FRED opens a file for reading and writing, user BARNEY is
unable to open the file until user FRED has closed it.
Some applications require this restriction to be lifted. For example, an
application might require several users to have a file open for writing at the same
time. The PRIMOS file system allows this to be specified via a read/write lock
attribute.
The Nature of the Read/Write Lock Attribute: Every segment directory
and file has a read/write lock attribute. File directories and access categories do
not have them, since PRIMOS is entirely responsible for synchronizing updates
to these objects.
A file is protected against concurrent access by its read/write lock. The
read/write lock attribute for a file is checked every time a user opens the file for
reading, writing, or both reading and writing. In addition, a check is made to see
if the file is already open for reading and/or writing. Depending on the results of
these two checks, the attempt to open the file may be rejected with the error code
ESFIUS (File in use).
Even if only one user is accessing a file, that user may receive a file-in-use error
if he or she attempts to open the file twice. PRIMOS does not distinguish
between two different processes attempting to open a file and one process
attempting to open a file on different file units. For example, if a user attempts
to open one file for writing on two different file units, the second attempt to open
the file may fail.
Segment Directories and the Read/Write Attribute: The read/write
lock attribute for a segment directory affects not only the segment directory
itself, but also serves as the read/write lock for all of its members since segment
directory members have no attributes of their own (except for file type).

3-24 Third Edition

Accessing the PRIMOS File System

However, PRIMOS still distinguishes between the segment directory and each of
its members when it is called upon to open the directory or its members.
Therefore, two users may have two different files within one segment directory
open for writing at the same time, whereas an attempt by a user to open a
segment directory member file that is already open may meet with failure.
The Format of the Read/Write Lock
read/write lock attribute is as follows:

Attribute: The format of a

del rwlock bit(2);

The four possible values for a read/write lock attribute are detailed in Table 3-2.

Table 3-2. Values for a Read/Write Attribute

Value Keyword Meaning
0 SYS Use the system-wide default. The system default is set via the

RWLOCK configuration directive, which is described in the System
Administrator's Guide, Volume I: System Configuration. Normally,
the default is 1, corresponding to a file read/write lock of 1, or EXCL
(described below).

However, the system-wide read/write lock may be 0, meaning only 1
reader or 1 writer may have a file open at a time. The other possible
value for a system-wide read/write lock is 3, corresponding to a file
read/write lock of 2, or UPDT (described below).

1 EXCL Exclusive control; n readers or 1 writer. This allows multiple pro
cesses to read a single file at a time, unless the file is being written.
If the file is being written, no other user may open the file.

2 UPDT Update control; n readers and 1 writer. This allows multiple processes
to read a single file at a time even while it is being written by one
process. It still prevents more than one process from writing to the
same file at the same time. This setting is useful for command output
(COMOUTPUT) files, for example.

3 NONE No control; n readers and m writers. This provides no locking on a
file at all. Using this setting is not recommended, as it decreases the
performance of the file system, and can result in damage to your
files.

The File Type Attribute

Every object in the PRIMOS file system has a file type. File types include the
following:

Third Edition 3-25

Advanced Programmer's Guide II: File System

• Sequential access method file (SAM)
• Direct access method file (DAM)
• Sequential access segment directory (SEGSAM)
• Access category (ACAT)
• Contiguous access method file (CAM)

The file type of an object is determined only when the object is created. It
cannot be changed afterwards without deleting and recreating the object.
The file type of an object can be read by a user program along with other file
system attributes. The file type attribute is declared as follows:

del type bit(8);

The seven possible values, and their corresponding keywords, are

Keyword Value
SAM
DAM
SEGSAM
SEGDAM

Directory
ACAT
CAM 7 (ROAM files only)

Notice that file type value 5 is not defined. A value of 5, and any other
undefined value, should be treated as an unrecognized file type. Prime reserves
the right to use any or all of these undefined values.

The Dumped/Not-dumped Attribute
For backup service, the file system provides a dumped bit for all file system
objects except access categories. The file system resets this bit whenever the
corresponding object is modified. A backup utility can read the dumped bit to
determine whether to make a backup copy of the object. If the dumped bit is
reset, the utility can then make a backup copy, and set the dumped bit on for the
object.
The dumped bit for a file system object is reset (turned off) whenever the date
and time last modified attribute for the object is updated. Similarly, if a file is

3-26 Third Edition

Quotas

Accessing the PRIMOS File System

deleted or renamed, the dumped bit of the parent directory is reset when the dtm
attribute of the parent directory is updated.
Dumped Bits for Directories: When a file is modified, the resetting of
dumped bits is not performed on all of the directories that intervene between the
file and the MFD. Therefore, a backup program must walk through the entire
contents of a directory, sensing the dumped bits for all of its members, before
deciding that no recent modifications have been made to its members.
Dumped Bits for Segment Directories: File attributes exist only for
members of file directories. Therefore, when a file within a segment directory is
modified, the resetting of the dumped bit occurs on the parent segment directory,
and not on the file, because the parent directory is a member of a file directory,
and the individual files are not.
Therefore, only the top-level segment directory dumped bit need be tested to
determine whether the contents of the segment directory have changed.
A corollary is that if the dumped bit for a segment directory is reset, the entire
segment directory must be backed up, even if only one member of the segment
directory has been modified.

The Special/Not-special Attribute
User programs that read directory entries may find the special bit useful.
PRIMOS sets this bit on for all of the special files when it creates a new disk
partition. Special files include the MFD, the BOOT file, the BADSPT file (if it
exists), and the record allocation table for the disk partition (which has the name
of the disk partition as its objectname).
PRIMOS does not allow user programs to change the special bit for a file system
object, nor does it allow objects with the special bit set to 1 to be deleted.
Special files exist only in the MFD for a disk partition.

PRIMOS allows you to set quotas on your directories and lower-level directories
under certain conditions. Your programs can also make use of quota
manipulation subroutines to do this. Quotas are expressed in terms of numbers
of physical disk records, and must be assigned carefully if they are to be
meaningful and useful.
Detailed explanations of quotas and their settings can be found in the System
Administrator's Guide, Volume I: System Configuration, and in the PRIMOS
User's Guide. Subroutines related to quotas are described in Chapter 11, Disk
Quotas, and in Subroutines Reference II: File System.

Third Edition 3-27

Programmer Interfaces to the
File System

4

Chapter 2, The PRIMOS File System, introduced you to the concepts of the file
system you need to know in writing programs that deal with files, access
categories, and the various kinds of directories that the file system supports.
This chapter explains the file system interfaces that you as a programmer can use
to communicate with the file system, what these interfaces allow you to do, and
the principles involved in using them.

Communicating With the File System

r

As a programmer using PRIMOS programming tools like editors, compilers, and
linkers, you have at your disposal a number of procedures by which you can
communicate with the file system. From your terminal you can use commands
to attach to directories, set access to file system objects, and create, open, close,
and delete file system objects. These commands invoke PRIMOS programs that
in turn call subroutines that perform the requested functions. Some PRIMOS
programs invoke command functions, which in turn invoke subroutines to do
their tasks.

Commands
Commands constitute the highest-level programmer interface to the PRIMOS
operating system. This is the interface that you use to request the execution of
PRIMOS programs stored in the standard command directory CMDNCO, and to
execute any application program you have developed and installed in this
directory. Descriptions of all PRIMOS commands are given in the PRIMOS
Commands Reference Guide. You or someone in your organization should
provide information on the execution of your application programs.
You can also request the execution of a program stored in a directory other than
CMDNCO by invoking the RESUME command, supplying the pathname of the
program as an argument.

Third Edition 4-1

Advanced Programmer's Guide II: File System

Command Functions
Command functions can be considered the second highest-level programmer
interface after the command level. Command functions are used in a PRIMOS
command line, and are analogous to subroutine calls in a program: during
program execution, a subroutine call in a program statement requests the service
of a precompiled procedure stored in a subroutine library; a command function
requests the execution of a precompiled procedure at PRIMOS command level.
A command function consists of a function name and zero or more arguments or
options, all enclosed in square brackets ([]). It differs from a command in that it
can return a value and store it in a variable for use by a subsequent command or
command function. Command functions are explained in the PRIMOS
Commands Reference Guide and the CPL User's Guide.
For repetitive operations at command level, you can build a series of commands
and command functions into a Command Procedure Language (CPL) file.
You can store a CPL program in one of your directories and execute it by
invoking it from PRIMOS command level using the RESUME command (for
detailed explanations, see the CPL User's Guide).
You can also store CPL programs in CMDNCO and invoke them directly as
commands. However, for all but the simplest of routines, a CPL program's
execution speed tends to be slower than that of the equivalent program stored in
compiled form.

Subroutine Calls
As described in Chapter 3, Accessing the PRIMOS File System, your application
programs can contain subroutine calls that perform a variety of functions
involving the file system: opening and closing files, reading and writing data, as
well as a number of operations involving pathnames, access control, and the like.
You can make use of the extensive library of subroutines supplied by Prime, but
you can also create your own libraries of subroutines tailored to the needs of
your applications. Commands and command functions make extensive use of
subroutines supplied by Prime during their execution; for example, the editor
program uses subroutines to open, read, write, and close text files, as well as to
create new files when necessary. These operations implicitly involve other
subroutines that may, among other things, attach to top-level directories,
evaluate access rights, and supply access control lists for newly created files. All
of these actions are largely invisible to you as you sit at your terminal running
the editor, unless you attempt to violate an access right, or PRIMOS detects
some kind of abnormal condition such as a directory quota overflow.

System Primitives
Subroutine calls are not necessarily single-level operations, but may progress to
one or more sublevels. There is a point at which no further sublevels are called

4-2 Third Edition

Programmer Interfaces to the File System

during a subroutine's execution. A subroutine that itself makes no calls to other
subroutines is known as a system primitive; it is the lowest programmer-visible
interface between a program and PRIMOS. The PRWFSS subroutine, for
example, is a system primitive that positions, reads, writes, or truncates a file; it
can be called directly from a program, or indirectly through other subroutines
such as SRCHSS (used to open, close, delete, change access, or verify the
existence of a file).

Arguments and Options
Arguments and options are additional elements of all of the programming
interfaces described so far. They increase the flexibility of operations of
commands, coinmand functions, and subroutines by allowing variations in the
ways in which they operate. An argument is usually a character string that
defines the object to be operated on, such as a filename, a directory name, a file
unit number, or one of the several forms of pathname. An option defines the
way the object is operated on.
For a call to the SRCHSS subroutine, for example, an argument would be the
name of a file unit to be operated on, and an option could specify that the desired
action is to open the file unit. Another option could specify whether the file unit
was to be opened for reading, writing, or both. A subsequent call to SRCHSS
would be used to close the file unit, using the same file unit number (argument)
and a different action (option).
For example, to open a new DAM file for writing on an unused file unit, perform
some write operations on it, and then close it, you could use the following
sequence of calls:

CALL SRCH$$(K$WRIT+K$GETU+K$NDAM, NEWFILE, 7, UNIT, TYPE, CODE)

. /*Do some write operations

CALL SRCH$$(K$CLOS, 0, 0, UNIT, 0, CODE)

The three KS options in the first call specify opening a DAM file (KSNDAM)
for writing (KSWRIT) on an available file unit (KSGETU). The KSCLOS option
in the second call causes the file to be closed. UNIT is a data element defined in
the program to receive the file unit number returned by the subroutine when it
opens the file; it also specifies the file unit to be closed. The zero (0) entries in
the close call indicate that space must be reserved in the calling sequence for all
elements of the call, even though some may be unused for certain actions.
At command level, arguments and options are similarly used. For example the
SET_ACCESS command accepts both an argument to specify the name of the
object on which the access control list is to be set, and an option to specify
whether the list is to be obtained from an access category or set the same as
another (existing) object.

Third Edition 4-3

Advanced Programmer's Guide ll: File System

Attach Points and Access Rights
All of the programming interfaces to the file system assume that you as a
programmer at a terminal, or a user using one of your programs, can access the
object or objects to be worked on. That is, the user ID of the person working on
an object must exist (either explicitly or implicitly) on that object's access
control list (ACL), and the ACL must include, for that user ID, the kind of access
appropriate to what the person wants to do. (Refer to the PRIMOS User's Guide
for details on access control lists.)
In order to gain access to a file system object, you (or your program) must also
be attached to the directory that either directiy or indirectly (by way of one or
more lower-level directories) contains the object. You can attach to a directory
from your terminal at command level by using the ATTACH command; your
program can do the same thing by using one of the ATS subroutine calls. In both
cases, Use (U) access is required at all directory levels that have to be passed
through to get to the object.
The Three Attach Points: The initial, home, and current attach points
identify your (or your user's) initial, home, and current directories. Other terms
refer to these attach points as follows:

• The initial attach point identifies the initial, origin, or login directory.
• The home attach point identifies the home, or working directory.
• The current attach point identifies the current directory.

The terms attach point and directory are generally interchangeable. You
establish an attach point by attaching to a directory.
The PRIMOS file system is heavily dependent on attach points. Most
commands, command functions, and subroutines involving file access use the
current attach point. Subroutines that accept pathnames to objects outside the
home directory can temporarily change the current attach point during their
execution. Some file system subroutines allow the attach points to be
permanently changed.
There are specific uses for and restrictions on the three attach points,
summarized as follows:

Attach Point Use
Initial Attaches you to your initial directory. The initial attach point is

established when you first log in. From the terminal, you can
attach to your initial directory at any time by issuing the
PRIMOS command ORIGIN. Your program can attach to the
initial directory by a call to the ATSOR subroutine.

4-4 Third Edition

Programmer Interfaces to the File System

Home Establishes and attaches you to your home directory. This
directory is your primary working directory. From the terminal,
you can change the home directory by using the ATTACH
command; a program uses a call to the ATSHOM subroutine.
Changing the home attach point also changes the current attach
point. When commands such as LD and LIST_QUOTA are
issued without arguments, the home directory is the implicit
target directory. User programs may change the home attach
point, but this is rarely done except when it is part of the
function of the program to do this.

Current Establishes and attaches you to a current directory. The current
attach point is normally the same as the home attach point.
However, programs can change the current attach point by using
one of the AT$ subroutines to operate on objects outside the
home directory without changing the home directory. Before
returning the user to command level, programs should always
reset the current attach point to the home attach point.
Most PRIMOS subroutines that change the current attach point
reset it to the home attach point before returning to their callers.
Normally, you cannot explicitly, from command level, set the
current attach point to be different from your home attach point.
You can, however, explicitly reset the current attach point to be
the same as the home attach point by issuing the ATTACH
command with no arguments.

There are currently nine access rights that PRIMOS uses at various times to
determine whether you (as a programmer) or your program (on behalf of its user)
can do what you or your program want to do with a file system object. These
rights and what actions they allow are explained in detail in the PRIMOS User's
Guide. In brief:

Access Right
O

D

Description
Applies to files and directories; allows user to set access rights
except for P and ALL; if the object is a file or a segment
directory, the possessor is permitted to set the rwlock.
Applies to directories; allows the access rights and attributes of
the directory and its subordinate objects to be changed.
Applies to directories; allows subordinate objects to be deleted
or renamed.
Applies to directories; allows subordinate objects to be added or
renamed.
Applies to directories; allows their contents to be listed.

Third Edition 4-5

Advanced Programmer's Guide II: File System

U Applies to directories; allows the directory to be "used;" that is,
attached to or passed through on the way to a subordinate object.

R Applies to files; allows them to be read; allows EPFs to be
executed.

W Applies to files; allows them to be written.
X Applies to local EPFs; allows them to be executed (not required

ifR is allowed).

Two other rights, represented by the character strings ALL and NONE, mean,
respectively that all of the above individual rights, or none of them, apply to the
user to whom these designations are given.
An important point to remember, when referring to a program's access to a file
system object, is that it is not the program that must have access to the object,
but the user on whose behalf the program is running. That is, the user ID by
which a user is known to the system must exist on the access control list of the
object on which an action is to be performed.
The ACL of a newly created object is always inherited from its containing
directory. It is then said to have a default ACL. A newly created file or
directory inherits all of the access rights of its parent directory (even though R,
W, O, and X accesses are the only ones meaningful to a file). If you change the
inherited ACL of a newly created directory, then the changed ACL becomes the
default ACL for any objects subsequently created within the new directory.
The existence of the user ID on the ACL may be either explicit (the user ID
itself) or implicit (the name of a group to which the user belongs or the special
identifier SREST). Each of these has its uses in particular circumstances. For
example, if you are writing a program that creates a file for the exclusive use of
its user, it would be appropriate for that program to create for the file an ACL
that contains the user's name explicitly, and gives him the necessary rights to the
file. On the other hand, if the program executes on behalf of a database group,
and that group has a group ID, then it would be appropriate to create an ACL
that contains the group ID and the rights applicable to the group. Any
fine-tuning of this ACL with respect to specific users in the group can be done
by using the ACL-related commands from PRIMOS command level.

Objectnames
The ways in which objectnames can be specified vary from command to
command, command function to command function, and subroutine to
subroutine. The allowable forms of objectnames (simple names, relative, full, or
absolute pathnames) for the various levels of PRIMOS interfaces are defined in
the appropriate manuals and guides. For subroutines that deal with the file
system, they are given also in later chapters of this book.

4-6 Third Edition

Programmer Interfaces to the File System

You must keep in mind, when writing application programs that use file system
subroutines, that the way you specify an objectname in a subroutine call (if you
have a choice of method) can affect one or more of your attach points in some
unexpected way. It may also determine whether or not the user on whose behalf
your program is running has access to the object whose name is specified. Refer
to the section titled How and When Access Is Calculated in Chapter 3,
Accessing the PRIMOS File System, and remember that the same subtleties of
the ACL mechanism that apply at command level can also apply at the command
function and subroutine levels.
When interpreting objectname arguments, subroutines make a distinction
between home and current directories that is not made at command level or
command function level. For a subroutine, the current directory is the directory
to which the process is currently attached. The home directory is either the one
first attached to when the user logs in, or the one specified in a subroutine call
such as ATSHOM.
Assume, for example, that you have used the ATTACH command to attach to a
directory MYDIR. Your home and current attach points are now MYDIR. Now,
you invoke a command or program with a pathname as an argument:

MYPROG JANESDIR>MEMOS

The behavior of the home and current attach points is as follows:

1. The home attach point remains the same; from your point of view the
attach point does not change.

2. MYPROG calls various subroutines that locate, check access, and open the
MEMOS file in the JANESDIR directory. The subroutines change the
current attach point to JANESDIR.

3. When the program terminates, the last subroutine executed (typically the
one that closes the file) sets the current attach point back to MYDIR.

When you use a subroutine that accepts only a simple pathname, you must know
the current attach point (and hence the current directory), because the current
directory is the one that is used to determine the pathname of an object referred
to by a simple name.

File Units and Attributes
When a file is opened using a subroutine call such as SRCHSS, it becomes
associated with a file unit number, which is used in subsequent subroutine calls
to manipulate the file data. A file can be read or written only by referring to its
file unit number in read or write subroutine calls. File units are described more
fully in the Subroutines Reference II: File System.

Third Edition 4-7

Advanced Programmer's Guide II: File System

Files can be opened by specifying a file unit number explicitly or by allowing
PRIMOS to allocate one (except in the FORTRAN language, which requires an
explicit file unit number). If you are writing a program that is entirely
self-contained (that is, it does not support, require support from, or otherwise
communicate file information to another program), it makes little difference how
you associate a file with its file unit number, other than to make sure that an
explicitly defined number is not already in use by the same program. However,
if your program is one element of a larger group of programs that make up a
subsystem and that have to communicate file unit information among
themselves, then it is more appropriate to let PRIMOS allocate file unit numbers,
and to have the program that opens the file the first time store the returned file
unit number in a program variable accessible to all components of the
subsystem. This technique is particularly appropriate when a number of file
units are opened at various times and in unpredictable order.
In programming a subsystem, once a file has been opened for the first time and
associated with a file unit number, then that number should be used for all
subsequent operations on that file, using the centrally stored file unit number
returned from the first open call. In particular, if the same file is opened more
than once during an application's execution, the file unit number resulting from
the first open call should be used to explicitly define the number for subsequent
open calls, rather than letting PRIMOS allocate a possibly different number and
cause inconsistencies to arise among the members of the family of programs in
the subsystem.
When your program has opened a directory containing a file system object, a set
of attributes describing each object contained in the directory is available to the
program. The attributes are read by the ENTSRD subroutine call into a structure
that your program provides, as described in detail in Chapter 10, File Attributes.
You must remember two things when using a subroutine that reads, sets, or
changes the attributes of an object. First, the containing directory must be open
and associated with a file unit number, since this is the argument that the
subroutine uses to determine which directory to look in for the attribute list.
Second, the object whose attributes are to be obtained, set, or changed must be
immediately contained within that directory, since the argument specifying the
object's name does not accept a pathname (that is, the object is assumed to be in
the current directory).
The subroutine used to set or change attributes is SATRSS, which is fully
described in the Subroutines Reference II: File System, along with the formats of
the structures that your program needs to provide for its operation.

PRIMOS Responses (Return Codes)

Virtually all PRIMOS subroutines communicate with their callers in one
consistent respect: they return a numeric code that informs the caller of the
subroutine's success or failure in performing its task. For consistency,

4-5 Third Edition

Programmer Interfaces to the File System

subroutines that you write for your own applications should also follow this
practice.
PRIMOS subroutines always place the return code in a 16-bit binary integer data
item. If the subroutine was entirely successful in completing its requested
function, the value of this integer is always zero (0). Other values are returned in
case of total failure or partial success. Your program should always check the
value of the return code upon returning from a subroutine call and take whatever
action is appropriate to the reported condition.
A complete list of PRIMOS subroutine return codes is provided in the
Subroutines Reference II: File System, with some examples of how a program
might respond to a nonzero response code.
It is important that a subroutine call that can potentially change the current attach
point be handled carefully when a nonzero code is returned. In order that the
programmer can rely on some consistent current attach point even if a subroutine
fails, most PRIMOS subroutines cause the current attach point to be set to the
home attach point before returning to their callers, regardless of where the
current attach point was before the call. Any programs, command functions, or
subroutines that are to become part of a larger subsystem should handle nonzero
return codes in a consistent way, and should be documented accordingly.

File System Operations: An Overview

This section gives you an overview of the five major operations (creating,
opening, reading, writing, and deleting) that your programs can perform on file
system objects and the general requirements that must be satisfied in order to do
these operations. They are explained in more detail in subsequent sections.

General Requirements
In order to perform operations on file system objects, the users of your programs
must be able to attach to the appropriate directories, and, in order to do this, they
must have rights appropriate to what they want to do. A successful attach to a
directory requires that the user have Use access to all directory levels from the
MFD down to the level that contains (or will contain) the object. Additional
rights required on the directory immediately containing the object depend on the
action that is to be performed. For example, in order to change the name of a
file, its owner must have both Add and Delete access to the directory containing
the file.

Third Edition 4-9

Advanced Programmer's Guide II: File System

Creating Objects
Programs that operate on files contain calls to subroutines that locate the files to
be operated on, either in the user's home directory or in the current directory. If
the attempt to locate a file that is to be opened for writing, or for both reading
and writing, is unsuccessful, you can give the program the option of creating it in
whichever directory it was being searched for. You do this by supplying a key
that specifies the type of file to be created if it is not found. Your program can
also create lower-level directories by using the same subroutine calls with the
appropriate keys. Creating a new top-level directory requires a different
subroutine from that which creates lower-level directories and files.
If a search for a file/ar reading is unsuccessful, the subroutine returns an error
code; the program must decide how to handle this condition. It is fairly probable
that the file is not found because the program is attached to a directory other than
the one in which the file is expected to exist; in this case the user is most likely
expected to have attached to the proper directory from PRIMOS command level
before executing the program. However, if you suspect that the file to be read
may not exist, then you should, by means of the appropriate key, test for the
file's existence. The program should also report its nonexistence and provide
for a graceful escape from the situation.

Opening Objects
Your programs open file system objects by using calls to any of several
subroutines, depending on where the object is relative to the home directory,
what kind of optional actions are desired (for example, creating new objects or
retrying in case of initial failure), and whether your applications are more suited
to using system library subroutines or application library subroutines. The
Subroutines Reference II: File System, contains a chapter of all of the subroutines
you can use to open file system objects.
In general, the subroutines in the application libraries (APPLIB or VAPPLB) are
easier to use for application programs, as their user interfaces are comparatively
simple and they return codes that are either true or false. In many cases, these
subroutines call lower-level subroutines, taking care of supplying arguments
with which you as a programmer need not concern yourself. They also perform
all possible error detection and recovery tasks before returning to their callers,
thus ensuring that everything that can be done to complete the requested function
is done, and that whatever errors are encountered are reported.

Reading Objects
Assuming that your program has successfully opened an object for reading or for
reading and writing, the object can then be read, using any of several subroutine
calls. The call to be used depends on whether the object is a file, a file directory,
or a segment directory; there are also calls intended expressly for reading ASCII

4-10 Third Edition

Programmer Interfaces to the File System

text files, getting characters or lines of text from command files or from the
terminal, and getting characters from an array.
Positioning an object involves an implied read of the object, although no data is
actually transmitted. Calls to position an object can be made either with a
specified absolute position or with a position relative to the current position,
either backward or forward. An object can also be positioned at its beginning or
end.

Writing Objects
Assuming that your program has successfully opened an object for writing or for
reading and writing, the object can then be written, using any of several
subroutine calls. Generally, the writing of data files is done by explicit calls to
write a line to a text file, a data file, or a coinmand output file or terminal. You
can also call a subroutine whose function is to store characters into an array.
The writing of other file system objects (file and segment directories and access
categories) is done implicitly during many operations on files. File creation,
ACL manipulation, and file renaming, for example, all implicitly involve writing
to these objects, but there are no explicit subroutine calls that result in writing a
specific character or string to them.
Files can be positioned to any arbitrary point before writing data to them.
Normally, when additional data is written to a SAM or DAM file, the file is
positioned to its end before writing is done; if the position is somewhere within
the file (or at its beginning), existing data is overwritten. Indexed files, such as
those used by MIDASPLUS, are capable of having records inserted into them;
such subsystems take care of insertions in such a way as not to overwrite existing
data.

Deleting Objects
Several subroutines are available to delete files and directories; the one you
choose usually depends on whether the object is directly contained in the home
directory or elsewhere.
The ability of your program to delete an object depends on the user's access
rights not only on the object itself but also on the parent directory. The state of
the delete-protect attribute on the object also affects the user's ability to delete
an object, independent of access rights. The ability to set or reset this attribute,
in turn, depends on the user's having Protect rights on the parent directory.
Having given you an overview of the programmer's interfaces to the file system
and the kinds of things that can be done with file system objects, the rest of this
chapter gives more details on file system operations at the command level and at
the subroutine level.

Third Edition 4-11

Advanced Programmer's Guide II: File System

Access Control to File System Objects

This section describes the requirements and procedures for attaching and
controlling access to file system objects, both at command level and at the
subroutine level.
As previously described, only file directories can be attached to; you cannot
attach to segment directories, access categories, or files directly, but you can
attach to the file directories that contain any of these objects.

Attach/ACL Requirements
Your user ID, or that of your program's user, must appear at all directory levels
above the directory that is being attached to, and the access rights must include
Use access. The user ID can be explicit, or it can be implied as the member of a
specific group-id or the special group SREST. Use access can be specified
explicitly (U access) or implicitly (ALL access).
Access control lists and the subroutines for manipulating them are described
more fully in Chapter 9, Access Control Lists (ACLs).

Attaching
At the command level you can attach to two of the three kinds of attach points:
the home attach point and the initial, or origin, attach point. Remember that the
initial attach point, the point at which you are attached when you first log in,
cannot be changed except by your System Administrator or Project
Administrator. You can change your home attach point, however, at any time; in
fact, if the files you are working on (specifically, program files if you are a
programmer) are in a directory other than your initial directory, you should use
Attach commands to attach to the directory containing them.
At the subroutine level, your programs can set not only the initial and home
attach points, but also the current attach point, a (usually) temporary attachment
that is in effect only for the duration of the routine in which the subroutine is
called.

Attach to Initial Directory

Command Command Function Subroutine

ORIGIN None ATSOR

Attach to Origin Directory (Command): To attach to the initial, or origin,
directory from PRIMOS command level, use the command:

4-12 Third Edition

Programmer Interfaces to the File System

ORIGIN
OR

Using the ORIGIN command sets both the home and the current attach points to
the initial directory. The ORIGIN command requires no arguments.
Attach to Origin Directory (Command Function): There are no
command functions that explicitly set the attach point to any directory.
However, some command functions, such as OPEN_FILE, could implicitly
attach temporarily to the initial directory. A CPL program that needs to attach
specifically to the initial directory can use the ORIGIN command as one of its
statements.
Attach to Origin Directory (Subroutine): To attach to the initial directory
from a program, use the subroutine call:

AT$OR (key, code)

The value of key is KSSETH if both home and current attach points are to be set
to the initial directory, or KSSETC if only the current attach point is to be set.
Note that if only the current attach point is set, any subroutine that uses a simple
objectname as an argument looks in the initial directory for the object, regardless
of the setting of the home attach point.
The details of the calling sequence for the ATSOR subroutine are given in
Chapter 6, Attach Points.

Attach to Home Directory

Command Command Funct ion Subrout ine

A T T A C H N o n e A T S H O M

Attach to Home Directory (Command): To define and attach to the home
directory from PRIMOS command level, use the command:

ATTACH [directory name]
A

Using the ATTACH command sets both the home attach point and the current
attach point to the directory specified as the argument. If no argument is given,
no change occurs (unless the current attach point has been left set at some other
point in a previous operation, in which case it is reset to the home attach point).
directory name can be any form of pathname that leads to a file directory.
Attach to Home Directory (Command Function): There are no
command functions that explicitly set the attach point to any directory. A CPL

Third Edition 4-13

Advanced Programmer's Guide II: File System

program that needs to specifically set the home directory can use as one of its
statements the ATTACH command in the form just described.
Attach to Home Directory (Subroutine): To set the current attach point to
the current home directory from a program, use the subroutine call:

AT$HOM (code)

The details of the calling sequence for the ATSHOM subroutine are given in
Chapter 6, Attach Points.

Attach to Any Directory

Command Command Function Subroutine

ATTACH None ATS

ATS ABS

ATSANY

ATSREL

Attach to Any Directory (Subroutine): To set the current and (optionally)
the home attach points to a specific directory (other than the initial or home
directory), use one of the following subroutine calls:

ATS (key, path, code)
AT$ABS (key, partition, directory, code)
ATSANY (key, name, code)
ATSREL (key, name, code)

Details of these calling sequences and their operations are given in Chapter 6,
Attach Points.
In all of these calls, the value of key determines whether both the current and
home attach points are to be set, or only the current attach point. A value of
KSSETH sets both; a value of KSSETC sets only the current attach point. If you
specify KSSETH, the effect is the same as if the ATTACH command had been
used at the terminal.
The AT$ call is the most general of all of the attaching calls, in that it accepts a
pathname in any form, and then calls one of the others, depending on the results
it obtains from parsing the pathname. A null name argument (") means the
home directory, and is equivalent to the ATSHOM call or the ATTACH
command with no argument. You can use the ATS call to attach to anywhere
from anywhere, regardless of whether or not the current and home attach points
were the same before the call.

4-14 Third Edition

Programmer Interfaces to the File System

In the ATSABS call, partition is the name or logical disk number of an active
disk on the system on which your program is running, or on another system
connected through a network. The partition argument can also be the null string,
implying logical disk 0 (zero); or it can be '*', signifying the disk partition
containing the directory to which the current attach point is set at the time of the
call.
The directory argument is the name (and optional directory password, separated
by a single space) of a top-level directory on the disk partition identified by
partition. A null directory argument signifies the MFD of the disk partition.
The ATSANY call requires name to be an unqualified pathname, beginning with
the name of a top-level directory. Remember the rules that were given in
Chapter 3, Accessing the PRIMOS File System, for directory searching when
using an unqualified pathname.
The ATSREL call requires name to be the name of a directory immediately
subordinate to the current directory. It can include a directory password,
separated by a single space.

Access Control List (ACL) Functions
The ACL functions can be used at the command level to define, modify, list, and
delete user access rights on file system objects. You can define ACLs by default
from the object's containing directory, by specifying separate user IDs and their
individual rights, or by specifying user groups and the rights that apply to them.
You can also define access categories that protect any number of objects with the
same ACL. The PRIMOS Command Reference Guide and the PRIMOS User's
Guide explain the use of the various ACL-related commands in detail.
When using ACL-related subroutines in a program, your program must furnish
the ACL entries in the form of a structure containing the user ID/access right
pairs; the subroutine call supplies the address of the structure in the form of a
pointer argument, addr(acl struct). Chapter 9, Access Control Lists (ACLs),
gives the details of the calling sequences and operations of all of the
ACL-related subroutines.
The ACL structure is shown pictorially in Chapter 9, Access Control Lists
(ACLs), and in program declaration form in the Subroutines Reference II: File
System.
The target object for any ACL-related command or subroutine can be a file, a
file directory, or a segment directory. An access category is a special object that
contains an ACL used to protect other objects; the ACL of the access category
itself is the same as that of the group of objects it protects.
At both command and subroutine levels you, or your program's user, must have
Protect and List access to the containing directory, and Protect access to the
object on which an ACL is to be set.

Third Edition 4-15

Advanced Programmer's Guide II: File System

Setting Default Access

Command Command Function Subroutine

SET.ACCESS None ACSDFT

Setting Default Access (Command):PRlMOS gives a default ACL
automatically to any object whenever the object is created; the ACL is the same
as that of the containing directory. (The System Administrator or Project
Administrator should set a specific ACL, as described later, on a top-level
directory if it is to be different from that of the MFD.) Any objects created at
levels below the top-level directory then gets this specific ACL by default.
To set a default ACL from PRIMOS command level, use the command

SET_ACCESS objectname
SAC

In this form of the SET_ACCESS command, if the target object has an ACL
different from the default, its ACL is reset to the default. A message may be
returned indicating that there is already an ACL set on the object and asking
whether it is to be replaced; the message can be suppressed by using the
-NO_QUERY option.
Be careful, when you set the default access on an object, that the directory that is
supplying the default ACL has rights appropriate to the object on which the
default is being set. For example, Read and Write access as such are not
meaningful to directories, but are usually included in directory ACLs so that they
are inherited by subordinate files automatically.
Setting Default Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set an ACL
can use the appropriate PRIMOS command as a program statement.
Setting Default Access (Subroutine): To set a default ACL from a
program, use the subroutine call

AC$DFT (name, code)

The name argument can be any of the valid forms of pathname. The same
precautions regarding propagated ACLs apply to the ACSDFT subroutine as to
the SET_ACCESS command described above.
Details of the calling sequence and its operation appear in Chapter 9, Access
Control Lists (ACLs).

4-16 Third Edition

Programmer Interfaces to the File System

Setting Specific Access

Command Command Function Subroutine

SET_ACCESS None ACSSET

Setting Specific Access (Command): To set a specific ACL from
PRIMOS command level, use the command

SET_ACCESS objectname user-id:access-rights ... [-NO.QUERY]
SAC

In this form of the SET_ACCESS command, the resulting ACL contains the list
of users and access rights given as arguments to the command, plus, by default,
$REST:NONE if no other specific rights are given to the SREST group. The
ACL thus produced replaces any ACL already existing on the object. To modify
an existing entry on an ACL without replacing the ACL, use the EDIT_ACCESS
command, described later.
If objectname does not exist, PRIMOS assumes that you want to create an access
category. If you do, refer to Creating an Access Category, described later;
otherwise answer NO to the query returned by PRIMOS.
Setting Specific Access (Command Function): There are no command
functions to set access control lists. A CPL program that needs to set an ACL
can use the appropriate PRIMOS command as a program statement.
Setting Specific Access (Subroutine): To set a specific ACL from a
program, use the subroutine call

AC$SET (key, name, addr(acl struc), code)

In the ACSSET subroutine call, name governs the creation and replacement of
ACLs and specifies the error to return if ACSSET is called to replace a
nonexistent ACL or to create an ACL on an object that already has one. The
ACSSET description in Subroutines Reference II: File System lists the possible
key values and their meanings, name specifies the object that is to receive the
new ACL, as in the ACSDFT call previously described. The structure of the
ACL entries is shown in diagrammatic form in Chapter 9, Access Control Lists
(ACLs). Each entry can have as many as 80 characters, and there can be as many
as 32 entries in a given list.

Setting Category Access

Command Command Function Subroutine

SET_ACCESS None ACSCAT

Third Edition 4-17

Advanced Programmer's Guide II: File System

Setting Category Access (Command): To set the access of an object to
that of an existing access category, use the command

SET ACCESS objectname -CATEGORY acatname
S A C - C A T

objectname argument can be any valid form of pathname. The access category
specified by acatname must exist in the same directory as that of the object being
protected. (Creating an access category is described later in this section.)
Setting Category Access (Command Function): There are no
command functions to set access control lists. A CPL program that needs to set
an ACL can use the appropriate PRIMOS command as a program statement.
Setting Category Access (Subroutine): To set the ACL of an object
from a program, use the subroutine call

AC$CAT (name, category, code)

The name argument identifies the object to be protected; it can be any valid form
of pathname, category is the simple name of the access category that is to
protect name; the access category must exist and must reside in the same
directory as name. The calling sequence and operation of the ACSCAT
subroutine are described more fully in Chapter 9, Access Control Lists (ACLs).
Access requirements for using the ACSCAT subroutine are described in the
Subroutines Reference II: File System.

Setting Access Like That of Another Object

Command Command Funct ion Subroutine

S E T _ A C C E S S N o n e A C S L I K

Setting Access Like That of Another Object (Command): To set an
object's access so that it is identical to that of another object from PRIMOS
command level, use the command

SET_ACCESS objectname! -LIKE objectname!
SAC

Both objectnamel and objectname! can be any valid form of pathname; objects
need not be in the same directory, objectnamel identifies the target object on
which the access is to be set; objectname! identifies the object whose access is to
be applied to the target object.
There is also no requirement that source and target objects be of the same type. If
the source and target objects are of different types (for example, the source is a

4-18 Third Edition

Programmer Interfaces to the File System

directory and the target is a file), be sure that the source object includes access
rights appropriate to the target, as described previously in this chapter.
When you use this form of the command, it does not matter whether the source
object's ACL is derived from its superior directory, from an access category, or a
specific ACL; the ACL of the target is always a specific ACL, since it is the
ACL's values that are copied, not the location of its source.
Setting Access Like That of Another Object (Command
Function): There are no command functions to set access control lists. A
CPL program that needs to set an ACL can use the appropriate PRIMOS
command as a program statement.
Setting Access Like That of Another Object (Subroutine): To set an
object's access so that it is identical to that of another object from a program, use
the subroutine call

AC$LIK (target, reference, code)

Both target and reference are any valid form of pathname; target identifies the
object on which an ACL is to be set, while reference identifies the source of the
ACL. The actions are the same as described in the command description just
given; the calling sequence is described more fully in Chapter 9, Access Control
Lists (ACLs). The Subroutines Reference II: File System gives information on
the access rights required to use the ACSLIK call.

Creating an Access Category

Command Command Function Subroutine

SET_ACCESS None ACSSET

Creating an Access Category (Command): To create an access category
from PRIMOS command level, use the command

SET_ACCESS objectname user-id:access-rights ...
SAC

This is the same form of SET_ACCESS command as you use to set a specific
ACL on an object, as described previously under Setting Specific Access. The
difference is that, in this case, objectname identifies a nonexistent object, and
PRIMOS assumes that you want to create an access category. PRIMOS tells you
that the access category does not exist and asks whether you want to create it. If
you do, the access category is created and given the name objectname.AC AT and
the specified ACL entry or entries. You can then use this access category in
subsequent operations to set category access as described previously.

Third Edition 4-19

Advanced Programmer's Guide ll: File System

Be careful, if you really want to create an access category, that the named object
does not exist; otherwise, PRIMOS locates the named object and apply the
specified ACL entry or entries to it, with possibly unwanted results. If you know
that an object whose name is, say, PRIVATE exists, you can still create an access
category with the name PRIVATE. ACAT in the same directory by explicitly
supplying the .ACAT suffix when giving objectname. PRIMOS recognizes this
as a different object from PRIVATE, and creates the access category
PRIVATE.ACAT.
The objectname argument can be any valid form of pathname, implying that you
can create an access category anywhere. Remember, though, that an access
category must be in the same directory as the object(s) it is intended to protect.
Creating an Access Category (Command Function): There are no
command functions to create access categories. A CPL program that needs to
create one can use the appropriate PRIMOS command as a program statement.
It would be prudent for your CPL program to test for the existence of the named
object using the [EXISTS] command function before attempting to use the
command to create an access category. If the function returns a result indicating
that the object exists, it should allow the user to specify what to do. Refer to the
CPL User's Guide for information on the [EXISTS] command function and how
to query the user and request a response.
Creating an Access Category (Subroutine): To create an access
category from a program, use the subroutine call

AC$SET (key, name, addr(acljtruc), code)

When using ACSSET to create an access category, name must identify a
nonexistent object (any valid form of pathname), and key must have a value of
either 0 (zero) or KSCREA. As before, addr(acl_struc) is a pointer to an area in
your program that contains the structure of the ACL to be set on the access
category.
The calling sequence and operation of the ACSSET subroutine are more fully
presented in Chapter 9, Access Control Lists (ACLs). The Subroutines Reference
II: File System gives the access rights required to use the ACSSET call.

Changing Access to an Object

Command Command Function Subroutine

E D I T _ A C C E S S N o n e ACSCHG

Changing Access to an Object (Command): To change an existing
ACL on a file system object from PRIMOS command level, use the command

EDIT_ACCESS objectname user-id-.access-rights ...
EDAC

4-20 Third Edition

Programmer Interfaces to the File System

The objectname argument identifies a file system object that already has an ACL
of any type: specific, category, or default. The object can be identified by any
valid form of pathname. The ACL argument(s) identify one or more individual
entries on the list that are to be added, deleted, or changed. Only the specified
entries are affected; unreferenced entries are left on the list unchanged.
Changing Access to an Object (Command Function): There are no
command functions to modify access categories. A CPL program that needs to
modify one can use the appropriate PRIMOS command as a program statement.
Changing Access to an Object (Subroutine): To change an existing
ACL on an object from a program, use the subroutine

ACSCHG (name, addr(acl struc), code)

In the ACSCHG call, the name and addr (acl struc) arguments have the same
functions and requirements as in the ACSSET call described earlier. This is the
fundamental call used for changing access, and behaves in the same way as the
EDAC command. There are other methods, which are described in Chapter 9,
Access Control Lists (ACLs), used to change an existing ACL to that of another
object and to make selective modifications to it afterwards.

Delet ing Access Control Entries

Command Command Function Subroutine

SET_ACCESS

EDIT_ACCESS

None

None

ACSSET

ACSCHG

Deleting ACL Entries: There are no explicit commands, command
functions, or subroutines that perform the sole function of deleting an ACL entry
or entries; the basic approach to accomplish this is to use the SET_ACCESS or
EDIT_ACCESS functions, and to include entries that contain the special access
right NONE.
For example, if an ACL contains an entry B AKER:LUR and you want to
exclude user BAKER from any access at all, you can use the EDIT_ACCESS
command (or the ACSCHG subroutine call), specifying the explicit entry
BAKER:NONE. This explicitly states that user BAKER has access NONE, and
an entry to this effect is placed on the ACL. Alternatively, you can use the
EDIT_ACCESS command, specifying BAKER:, that is, the user ID and the
colon, but no access rights. This results in the entry for user BAKER being
deleted from the ACL entirely.
You can also use the SET_ACCESS command (or the ACSSET subroutine call)
and explicitly specify all of the entries on the existing ACL except the entry for
BAKER.

Third Edition 4-21

Advanced Programmer's Guide II: File System

Using the EDIT_ACCESS command is much the easier method, especially if the
ACL is long and complex.

Creating File System Objects
File system objects are created in several different ways, depending on the type
of object. In order to create any type of object, you (at command level) or your
program's user must have Add access to the directory immediately containing
the object, and Use access to any higher-level directories.
For those objects that can be created at command level (file directories, files, and
access categories), you can specify either a simple name to create the object in
the home directory, or a pathname to create the object in any other directory for
which you have the appropriate access.

Creating Portals
A portal is a file system object, new at Rev. 23.0, that re-routes file system
references from one directory to another. Portals are used to reference other
common file system name spaces. Any references (for example, the ATS-type
subroutines) to the original directory are automatically redirected by a
disk-directed portal to the MFD of the specified directory on the remote
machine.

Creating Portals

Command Command Function Subroutine

ADD_PORTAL None NAM$AD_PORTAL

Creating a Portal (Subroutine): To create a portal from a program, use the
subroutine call

NAM$AD_PORTAL (entryname, portal_info, code)

NAM$AD_PORTAL converts an existing directory entry into a portal by
mounting the defined portal over the directory. Future references to the original
directory are redirected to the portal until you remove the portal with the
NAM$RM_PORTAL subroutine, described later in this chapter, or the
REMOVE_PORTAL command. You may only use this subroutine at the
supervisor terminal (User 1). Figure 4-1 shows the calling sequence of the
NAM$AD_PORTAL.

4-22 Third Edition

Programmer Interfaces to the File System

Creating a Portal

Entry Changed
When Portal
Is Created

Entry Changed
When Portal
Is Created

CHAR (32)
VARIABLE

<=32
STRING

♦ ♦
NAM$AD_PORTAL (entryname, portalJnfo, code)

\
HALF
INT

Standard
Error
Code

Q04D1D100563LA

Figure 4-1. Calling Sequence of NAM$AD_PORTAL

entryname [char(32) var] The entry that is changed when you create the
portal.

portal info [string] The input structure that defines the attributes of the
portal you are creating.

NAM$K_ROOT by 1, /* is root-portal */
NAM$K_NOROOT by 2; /* is disk-portal */
del 1 portal_info,

2 version fixed bin(15),
2 portal_target_key fixed bin(15),

Third Edition 4-23

Advanced Programmer's Guide II: File System

code

por ta l_ target ,
3 node_name char(16) var, /* must be

specified */
3 partition_name char(6); /* only for

diskjportal /*

[fixed bin] The standard return code. See the next section for a
list of error codes.

NAM$AD_PORTAL Errors: The following list describes errors associated
with the NAM$AD_PORTAL subroutine.
Error Name

ESSCCM

ESBVER

ESBKEY

ESWRIT
ESBNAM

ESUNOD

ESBPOR

ESIROO
ESNTUD
ESMTPT

ESRPMH

ESIREM
ESFMTF

Description

This routine may only be used at the supervisor
terminal.
The portal structure version number that you
specified is invalid.
The key that you specified is invalid.
You do not have access rights for this operation.
The entryname that you specified uses incorrect
syntax.
The nodename that you specified is not in
PRIMENET.
The portal target must be a remote node.
A portal may not be mounted on a root directory.

The specified entryname must be a directory.
A portal already exists at the point where you are
trying to mount a portal.
You cannot create a portal through another portal.
The portal mount must be on a local directory.
No such entryname exists.

Creating File Directories
In order to create a directory, you (or your program's user) must have Add access
to the directory (which may be the MFD) that contains the directory, and Use
access to any directories that are superior to the one being created.

4-24 Third Edition

Programmer Interfaces to the File System

Creating File Directories

Command Command Function Subroutine

CREATE None DIRSCR

CREASS *

* The CREASS subroutine is documented in Appendix A of Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although CREASS is still supported, programs should use DIRSCR beginning
with Rev. 20.2.
Creating a File Directory (Command): To create a file directory from
command level, use the command

CREATE directory pathname [-MAX n] [-CATEGORY acatname]
C R - C A T

The directory jpathname argument can be any legitimate form of pathname,
implying that you can create a file directory anywhere, provided, of course, that
you have the appropriate access. The ACL of the new directory is the same as
that of the containing directory; you can modify it once the directory exists by
using any of the access control commands described previously.
Creating a File Directory (Command Function): You can include the
CREATE command in a CPL program in the same form that you use when you
enter the command at your terminal; if you invoke the CPL program from your
terminal, the results are the same, including the return of error messages.
However, if you invoke the CPL program as a phantom, no error messages are
returned to your terminal. The program would not, for example, return a
message if you were to try to create a directory that already existed. It would
therefore be wise to check for the existence of the directory before attempting to
create it; you can use the [EXISTS] command function for this purpose, as
described in the CPL User's Guide.
Creating a File Directory (Subroutine): To create a file directory from a
program, use the subroutine call

DIR$CR (dirname, addr(attributes), code)

The DIRSCR subroutine creates a lower-level directory in the location indicated
by the pathname. It creates a password directory if the current directory is a
password directory; in this case, the owner and nonowner passwords are applied
to the new directory. If the current directory is an ACL directory, the new
directory is also an ACL directory; in this case, any passwords supplied in the
call are ignored.

Third Edition 4-25

Advanced Programmer's Guide 11: File System

Note The CREPWS subroutine creates a password directory within an ACL directory. It is
documented in Appendix A of the Subroutines Reference II: File System. CREPWS is
considered obsolete at PRIMOS Rev. 20.2. Although CREPWS is still supported,
programs should use DIRSCR beginning with Rev. 20.2.

Creating Files
In order to create a file, you (or your program's user) must have Add access to
the directory that is to contain the file, and Use access to all superior directories
leading to this directory.

Creating Files

Command Command Function Subroutine

None None SRCHSS

SRSFXS

TSRCSS *

* The TSRCSS subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS is still supported, programs should use SRSFXS beginning
with Rev. 20.2.
Creating a File (Command): There is no command that explicitly creates a
file; files are implicitly created by PRIMOS programs such as ED, the compilers,
the PMA assembler, and the linkers SEG, LOAD, and BIND.
An empty file is implicitly created from PRIMOS command level if the OPEN
command is given to open a nonexistent file for writing or for reading and
writing. Opening file system objects is discussed in more detail later in this
chapter and in Chapter 7, Text Storage and Retrieval, and Chapter 8, Data
Storage and Retrieval.
Creating a File (Command Function): As at PRIMOS command level,
there is no command function that explicitly creates a file; you can include the
OPEN command as a CPL program statement if you want the program to create
an empty file.
Creating a File (Subroutine): To create a file from a program, use one of
the subroutine calls

4-26 Third Edition

Programmer Interfaces to the File System

SRCH$$ (key, name, name Jen, unit, type, code)

SRSFX$ (key, name, unit, type, numsuffixes, suffixes, basename, suffixused,
code)

These calls are described in greater detail in Chapter 7, Text Storage and
Retrieval, and in Subroutines Reference II: File System.
In all cases, the newfile portion of key specifies the type of file (SAM or DAM)
to be created if the object specified by name does not exist and the action to be
performed is writing or reading and writing.
For the SRCHSS call, the name argument is a simple name; the resulting file is
created in the current directory and given the same protection as that of the
current directory.
For SRSFXS, name is any form of pathname; the resulting file is created in the
directory specified by the directory portion of name, and given its protection.
Creating Access Categories: The creation of access categories was
described earlier in the section entitled Access Control Functions.

OPENING FILE SYSTEM OBJECTS

To open a file system object, you (or your program's user) must have Use access
to all directory levels leading to the object to be opened. Additional rights
required on the object itself and its containing directory depend on the action to
be performed on the opened object.
As described previously, attempting to open a nonexistent file normally results in
that file being created in an empty state; the discussion in the following
subsections assumes that the object already exists.

Opening File Directories
File directories can be opened at both command level and at subroutine level;
however, they can be opened only for reading. File directories are written to
implicitly whenever some action on or within the directory requires that
information in the directory be updated (such as the date-time-last-modified or
access control information).

Third Edition 4-27

Advanced Programmer's Guide II: File System

Opening File Directories

Command Command Function Subroutine

OPEN OPEN.FILE SRCHSS

SRSFXS

TSRCSS *

* The TSRCSS subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS is still supported, programs should use SRSFXS beginning
with Rev. 20.2.
Opening File Directories (Command): There is not much to be gained
from opening a file directory interactively, since there are no commands that
enable you to read the directory interactively. However, PRIMOS does not
prevent your doing this; if you want to open a file directory from PRIMOS
command level, use the command

OPEN pathname funit key
O

pathname can be any form of pathname leading to a file directory to which you
have Read access. You must specify a file unit number funit; PRIMOS does not
look for an unused file unit when an object is being opened from command level.
The key argument must specify a value of 1 (read). See the PRIMOS Commands
Reference Guide for a full description of the OPEN command.
Opening File Directories (Command Function): PRIMOS allows a file
directory to be opened by the OPEN_FILE command function, but does not
allow any other operations (other than CLOSE) to be performed on it. Use the
following form in a CPL program:

&SETVAR unit := [OPEN FILE pathname status -MODE R]

In this CPL statement, unit is a local or global variable that receives the file unit
number assigned to the opened directory by PRIMOS; status is a local or global
variable that receives the status code resulting from the operation, pathname can
be any of the valid forms. See the PRIMOS Commands Reference Guide and the
CPL User's Guide for more detailed descriptions of the OPEN_FILE command
function.
Opening File Directories (Subroutine): To open a file directory from a
program, use calls to the subroutines described previously for creating file
system objects:

4-28 Third Edition

Programmer Interfaces to the File System

SRCH$$ (key, name, name Jen, unit, type, code)

SRSFXS (key, name, unit, type, numsuffixes, suffixes, basename, suffixjised,
code)

In all cases, the action portion of key specifies the action(s) to be performed
(read, write, or read and write).
For the SRCHSS call, name can be only a simple name, the name of the directory
being searched for in the current directory.
For SRSFXS, name is any form of pathname.

Opening Files
Files contained in file and segment directories can be opened for reading,
writing, or reading and writing at command, command function, and subroutine
levels. In all cases, Use access is required on the containing directory and
superior directories, and Read, Write, or Read and Write access is required on the
file, depending on the actions to be performed.

Opening Files

Command Command Function Subroutine

OPEN OPEN_FILE SRCHSS

SRSFXS

TSRCSS *

* The TSRCSS subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS is still supported, programs should use SRSFXS beginning
with Rev. 20.2.
Opening Files (Command): To open a file (either text or data) from
command level, use the command

OPEN pathname funit key
O

The pathname argument can be any form of pathname leading to a file. You
must specify a file unit number/wn/r, PRIMOS does not look for an unused file
unit when opening a file from command level. The key argument must specify a
value indicating the action to be performed. Refer to the PRIMOS Commands
Reference Guide for details on the use of the OPEN command and its arguments.

Third Edition 4-29

Advanced Programmer's Guide II: File System

Opening Files (Command Function): To open a file (either text or data)
from a CPL program, use a statement of the form

&SET VAR unit := [OPEN FILE pathname status -MODE x]

In this CPL statement, unit is a local or global variable that receives the file unit
number assigned to the opened file by PRIMOS; status is a local or global
variable that receives the operation's status code, pathname can be any of the
valid forms. The mode argument x specifies the action(s) for which the file is
being opened: R (Read), W (Write), or RW or WR (Read and Write). Note that
if the file is being opened in any mode that allows writing and the file does not
exist in the directory indicated by pathname, the file is created with no indication
of an error. Therefore, if proper operation of your CPL program depends on a
pre-existing file of the specified name, it would be wise to test for its existence
before opening it for writing. See the PRIMOS Commands Reference Guide and
the CPL User's Guide for more detailed descriptions of the OPEN_FILE
command function.
Opening Files (Subroutine): To open a file from a program, use calls to
the subroutines described previously for creating and opening file system
objects.

SRCH$$ (key, name, name Jen, unit, type, code)

SRSFXS (key, name, unit, type, num_suffixes, suffixes, basename, suffixjised,
code)

In all cases, the action portion of key specifies the action(s) to be performed
(read, write, or read and write).
For the SRCHSS call, name can be only a simple name, the name of the file
being searched for in the current directory.
For SRSFXS, name is any form of pathname.
Segmented files (members of a segment directory) can be opened by the
SGDSOP subroutine call, described in Chapters 7, Text Storage and Retrieval
and 8, Data Storage and Retrieval.

Reading File System Objects
After an object has been opened, it can be read under certain conditions and from
some, but not all, programmer interface levels. From the command level,
directories cannot be read, nor can fixed-length data records; variable-length
text records can be read and displayed on the terminal, but only indirectly
through a command function. Any kind of object can be read from program level

4-30 Third Edition

Programmer Interfaces to the File System

by use of several special-purpose subroutines, as well as some of the
general-purpose subroutines already described. In all cases, Read access is
required on the object to be read, and Use access is required to all superior
directories.

Reading Directories

Command Command Funct ion Subrout ine

N o n e N o n e D I R S L S

DIRSSE

DIRSRD

ENTSRD

SGDRSS

Reading Directories (Command and Command Function): There is
no mechanism by which directory entries can be read from command level or
from command function level. This applies to both file and segment directories.
(Directory contents can, of course, be displayed or written to a COMO file by
using the LD command.)
Reading Directories (Subroutine): Your program can read file directories
in several ways using any of the following subroutine calls:

DIR$LS (dir-unit, dir-type, initialize, desired-types, wild-ptr, wild-count,
return-ptr, max-entries, entry-size, ent-returned, type-counts,
before-date, after-date, code)

DIRSSE (dir-unit, dir-type, initialize, sel-ptr, return-ptr, max-entries,
entry-size, ent-returned, type-counts, max-type, code)

DIR$RD (key, unit, return-ptr, max-return-len, code)

ENT$RD (unit, name, return-ptr, max-return-len, code)

DIRSLS is a general-purpose directory searcher that takes arguments used to
select entries to be searched for. Selection criteria can be object types, wild-card
names, date and time last modified, or combinations of these. Selection can not
be by date and time last accessed or date and time created. Either file or segment
directories can be read. Selection can begin at the beginning of the directory or at
the current position; entries are returned in a structure provided by the program
that is capable of holding max-entries entries, and are pointed to by return-ptr.
This call is fully described in the Subroutines Reference II: File System.

Third Edition 4-31

Advanced Programmer's Guide II: File System

DIRSSE extends the functionality of DIRSLS by using a structure to contain
additional selection criteria, including date and time last accessed and date and
time created. DIRSSE is fully described in the Subroutines Reference II: File
System.
DIRSRD reads the contents of a directory sequentially, one entry at a time, and
returns each entry read in a program-provided structure pointed to by return-ptr.
It returns only named file system objects, and therefore cannot be used to read
subentries in a segment directory. It returns names for files, file directories, and
access categories. This call is described more fully in Chapter 8, Data Storage
and Retrieval, and in the Subroutines Reference II: File System.
ENTSRD is used to read the contents of a specific directory entry whose name is
given as the name argument. The entry is returned in a structure identical to that
used by DIRSRD, and pointed to by return-ptr. The entry being searched for
must exist in the current directory, since name is defined as having a length of 32
characters. This call is described in detail in the Subroutines Reference II: File
System.
Segment directories can be read by using either of the following calls

DIRSLS (dir-unit, dir-type, initialize, desired-types, wild-ptr, wild-count,
return-ptr, max-entries, entry-size, ent-returned, type-counts,
before-date, after-date, code)

SGDR$$ (key, unit, startjposition, end_position, code)

DIRSLS is used as described for file directories, except that dir-type must have a
value of 2 for a SAM segment directory, or 3 for a DAM segment directory.
SGDRSS returns an integer representing the position in the directory of the first
or next full or free position in the segment directory, depending on the values of
key and start jposition. key is KSFULL or KSFREE to look for full or free
entries, respectively. A start jposition value of zero (0) looks for the first entry; a
value equal to the position of the last full or free entry plus 1 looks for the next
entry. The position integer is returned in end jposition. The SGDRSS call is
described in detail in Chapter 8, Data Storage and Retrieval, and in the
Subroutines Reference II: File System.

Reading Files

Command Command Function Subroutine

None READ_FILE RDLINS

PRWFSS

4-32 Third Edition

Programmer Interfaces to the File System

Reading Files (Command): There are no commands that enable you to
read a file directly from PRIMOS command level. However, a text file can be
read indirectly and displayed to your terminal (or written to a COMO file), one
line at a time, by using a TYPE command whose argument is a [READ_FTLE]
command function, described next.
Reading Files (Command Function): You can read an ASCII (text) file
from a CPL program by including a statement of the form:

&SETVAR readjdata := [READFILE unit statusjvar]

In this CPL statement, unit is the decimal number of the file unit on which the
file has been previously opened. You supply local or global variable names for
the variables readjiata and status var. The former receives the line of text read
from the file, while the latter stores the return code from the execution of the
read. (The setting and evaluating of variables, and the use of the READ_FILE
command function, are described in the CPL User's Guide).
Reading Files (Subroutine): To read a file from a program, use one of the
following subroutine calls

RDLINS (unit, inputJine, max lineJength, code)

PRWF$$ (key, unit, addr(buffer), size, prejposn, halfwords_read, code)

The RDLINS call is used to read variable-sized records from a file open on unit
into a buffer, pointed to by input line. Reading ends when a new-line character
is encountered. If the number of characters read is less than max line length, the
remaining buffer characters are blank-filled. The RDLINS calling sequence is
illustrated in Chapter 7, Text Storage and Retrieval; the subroutine's operation is
further explained in Chapter 7, Text Storage and Retrieval, and in the
Subroutines Reference II: File System.
Use the PRWFSS call to position and read fixed-length data files. Positioning
and reading are only two of many functions that PRWFSS can perform; its
complete functionality is described in Chapter 7, Text Storage and Retrieval, and
in the Subroutines Reference II: File System.
In addition to RDLINS and PRWFSS, there are subroutines whose functions arc
to read from other than disk devices: RDASC reads ASCII characters from any
device, while RDBIN reads binary data from any device. These subroutines are
described in the Subroutines Reference II: File System.

Third Edition 4-33

Advanced Programmer's Guide II: File System

Reading the Global Mount Table

Command Command Function Subroutine

LIST_MOUNTS N o n e N A M $ L _ G M T

Reading the Global Mount Table (Command): LlST_MOUNTS reads
the contents of the Global Mount Table and returns a list of both the
currently-mounted disk partitions and the currently-mounted portals which the
calling program can access. You must be the System Administrator, or you
must use the supervisor terminal, in order for NAM$L_GMT to return the
remote private partitions (partitions on other machines that were created with the
ADDISK -PRIVATE command). The LIST_MOUNTS command is discussed
in the PRIMOS User's Release Document.
Reading the Global Mount Table (Subroutine): NAM$L_GMT reads
the contents of the Global Mount Table and returns a list of both the
currently-mounted disk partitions and the currently-mounted portals which the
calling program can access. You must be the System Administrator, or you
must use the supervisor terminal, in order for NAM$L_GMT to return the
remote private partitions (partitions on other machines that were created with the
ADDISK -PRIVATE command).

NAM$L_GMT(//K/ejr, ret_ptry maxjtems; retjtems, code)

index (fixed bin) A number that indicates the starting Global Mount
Table entry in the list to be returned; use index when filling in
the structure to which ret_ptr points. The GMT list of entries
may be referenced as an array
[0... (N-\)]
where N is the total of the number of entries in the GMT. Use an
array to call the NAM$L_GMT subroutine as many times as
there are GMT entries if the declaration of the structure is too
small.

retjptr A pointer to the structure that NAM$L_GMT fills in (the items
for each GMT entry).

maxjtems (fixed bin) The maximum number of entries to be declared as
GMT entries in the index field. If the maxjtems field is smaller
than (N-\), structure overflow occurs.

ret items (fixed bin) The number of entries filled in the structure.

4-34 Third Edition

Programmer Interfaces to the File System

code (fixed bin) The standard return code (NoError indicates
successful completion).

Badlndex (error) No such entry exists at the index given in the GMT.

Writing File System Objects

Writing Directories

Command Command Function Subroutine

None None SGDRSS

SGDSDL

File and segment directory objects are most often written to implicitly, as a result
of performing some function on a subordinate object that reflects a need to add
or update control information in its containing directory. Each time a file open
for writing is closed, for example, the date-time-last-modified information in
the containing directory needs to be changed; this is done as an implicit
byproduct of the close operation.
No writing to directories of either type can be done explicitly by commands or
command functions, and only a limited number of writing operations can be
done to directories at subroutine level, and these only on segment directories.
Likewise, there are no commands by which you can explicitly write records to a
file from command level; you can, however, write variable-length text records
using a command function in a CPL program.
Write access is required on any object to be written to; Use access is required to
all superior directories, and Add access is required to the containing directory if
a previously nonexistent file is being written into that directory. (If the name of
a file or other object in a directory is being changed, Delete as well as Add
access is required on the containing directory.)
Writing Segment Directories (Subroutine): You can effectively write to
a segment directory from program level by using the subroutine calls

SGDR$$ (key, unit, new_size, ignored, code)

SGDSDL (unit, code)

The SGDRSS call is used to extend or truncate a segment directory open on unit
by specifying the key value KSMSIZ and the new number of members in the
new size argument. The ignored argument is not used, and should be zero (0).

Third Edition 4-35

Advanced Programmer's Guide II: File System

The SGDSDL call is used to delete a member of the segment directory open on
unit. If the member deleted is not the last member of the directory, effectively
the size of the directory does not change; it changes only if the member deleted
is the last one.
Both of these subroutines and their calling sequences are described in Chapter 8,
Data Storage and Retrieval.

Writing Directories

Command Command Function Subroutine

None WRITE_FILE WTLINS

PRWFSS

Writing Files (Command): There is no direct command by which a text line
or data file record can be written from command level. You can, however, write
a text line using the WRITE_FILE command function described next.
Writing Files (Command Function): You can write text files (but not data
files) from a CPL program by using the command function

[WRITEJrILE unit text]

The unit argument is the file unit number of a text file previously opened for
writing or for reading and writing. The text to be written, represented by text,
can be either literal text (enclosed in quotes if it contains spaces or special
characters), or the current contents of a local or global variable previously set by
a command function such as RESPONSE. Refer to the CPL User's Guide for
further information on the WRITE_FILE command function.
Writing Files (Subroutine): To write a file from a program, use one of the
following subroutine calls

WTLIN$ (unit, outputJine, max line length, code)

PRWF$$ (key, unit, addr(buffer), size, reljposn, lhaljwordsj-ead, code)

The WTLINS call is used to write variable-sized (usually ASCII text) records to
a file open on unit from a buffer, pointed to by output line. Writing ends when a
new-line character is encountered. If the number of characters written is less
than max Jine length, the remaining characters in the buffer are blank-filled.
The WTLINS calling sequence is illustrated in Chapter 7, Text Storage and
Retrieval; the subroutine's operation is further explained in Chapter 7, Text
Storage and Retrieval, and in the Subroutines Reference II: File System.

4-36 Third Edition

Programmer Interfaces to the File System

Use the PRWFSS call to position and write fixed-length data files. Positioning
and writing are only two of many functions that PRWFSS can perform; its
complete functionality is described in Chapter 7, Text Storage and Retrieval, and
in the Subroutines Reference II: File System.
In addition to WTLINS and PRWFSS, there are subroutines whose functions are
to write to other than disk devices: WRASC writes ASCII characters to any
device, while WRBIN writes binary data to any device. These subroutines are
described in the Subroutines Reference IV: Libraries and I/O.

Closing File System Objects
Any file system object that is capable of being opened from command, command
function, or subroutine level is also capable of being closed. Objects can be
closed only by the CLOSE command or a subroutine; there is no CLOSE_FILE
command function to match the OPEN_FILE command function. However, the
CLOSE command can be included in a CPL program either with or without the
enclosing brackets ([]); the results are identical.

Closing File System Objects
Command Command Function Subroutine

CLOSE CLOSE CLOSFU

CLOSFN

SRCHSS

SRSFXS

TSRCSS*

* The TSRCSS subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS is still supported, programs should use SRSFXS beginning
with Rev. 20.2.
Closing Objects (Command and Command Function): To close an
object from command or command function level, use one of the following

CLOSE objectname

[CLOSE objectname]

Third Edition 4-37

Advanced Programmer's Guide II: File System

objectname is any valid form of pathname. The CLOSE function does not return
a code indicating that an object is not open; it does, however, return a code if the
object is not found.
Closing Objects (Subroutine): To close a file system object from program
level, use one of the subroutine calls

CLOSFU (unit, code)

CLOSFN (pathname, code)

SRCH$$ (key, objectname, name length, unit, type, code)

SRSFXS (key, pathname, unit, type, n-suffixes, suffix-list, basename,
suffix-used, code)

CLOSFU and CLOSFN are simplified interfaces to close file system objects by
file unit number and pathname, respectively. Their calling sequences and
operations are described more fully in Chapter 7, Text Storage and Retrieval.
SRCHSS and SRSFXS both require a key value of KSCLOS to close an object.
SRCHSS accepts only a simple objectname, and closes the named object in the
current directory. SRSFXS can close an object anywhere in the file system
(assuming appropriate access, of course). These subroutines are fully described
in the Subroutines Reference II: File System.
See also the description of the CLOSSA subroutine, part of the Application
Library package, given in the Subroutines Reference IV: Libraries and I/O.

Deleting File System Objects
Any file system object that has been created, by whatever means, can also be
deleted. Not all types of objects, however, can be deleted from all interface
levels: you cannot, for example, delete an individual segment from a segment
directory from command or command function level.
Delete access is required for the directory containing the object to be deleted;
Use access is required for all superior directory levels.

Deleting File System Objects

Command Command Function Subroutine

DELETE None SGDSDL

SRCHSS

4-38 Third Edition

Programmer Interfaces to the File System

Deleting File System Objects

Command Command Funct ion Subrout ine

SRSFXS

FILSDL

TSRCSS *

R E M O V E P O R TA L N o n e N A M $ R M _ P O R TA L

* The TSRCSS subroutine is documented in Appendix A of the Subroutines
Reference II: File System. It is considered obsolete at PRIMOS Rev. 20.2.
Although TSRCSS is still supported, programs should use SRSFXS beginning
with Rev. 20.2.
Deleting Objects (Command): To delete a file, file directory, segment
directory, or access category from command level, use the command:

DELETE objectname [options]

objectname is any valid form of pathname in which you have the appropriate
access rights; you can therefore delete an object anywhere in the file system.
The values that you can supply for options are described in the PRIMOS
Commands Reference Guide.
Note that there is no abbreviated form of the DELETE command.
Deleting Objects (Command Function): There is no command function
to delete a file system object. However, the DELETE command can be included
in a CPL program.
Deleting Objects (Subroutine): To delete a file system object from a
program, use one of the following subroutine calls

SGDSDL (unit, code)

SRCH$$ (key, objectname, namjength, unit, type, code)

SRSFXS (key, pathname, unit, type, n-suffixes, suffix-list, basename,
suffix-used, code)

FIL$DL (pathname, code)

The SGDSDL call is used only to delete members of a segment directory. The
program must first position to the desired segment number. See the section How
to Position a Segment Directory in Chapter 8, Data Storage and Retrieval. The

Third Edition 4-39

Advanced Programmer's Guide II: File System

unit argument gives the file unit number on which the segment directory was
previously opened.
For SRCHSS and SRSFXS, the value of key is K$DELE to delete an object. For
SRCHSS, objectname is the simple name of an object in the current directory; if
the object is a directory, the deletion occurs only if the directory is empty.
These calls are described further in Chapters 7, Text Storage and Retrieval and 8,
Data Storage and Retrieval, and in Subroutines Reference II: File System.
Removing Portals (Command): To remove a portal from command level,
use the command

REMOVE_PORTAL mountjpointjpathname [-HELP]

mountjpointjpathname is the fully-qualified pathname of the local directory
where the portal is mounted.

Removing Portals (Subroutine): To remove a portal by means of a
program, use the following subroutine call

NAM$RM_PORTAL (entryname, code)

NAM$RM_PORTAL deletes a portal entry in the specified directory pathname.
This subroutine may only be used at the supervisor terminal. Figure 4-2 shows
the calling sequence of NAM$RM_PORTAL.

entryname (char(32) var) The entry that represents the portal
mount point.

code (fixed bin) The standard return code. See the next
section for a list of error codes.

4-40 Third Edition

Deleting a Portal

Programmer Interfaces to the File System

Name of Entry
That Represents

Portal Mount Point

CHAR (32)
VARIABLE

NAM$RM_PORTAL (entryname, code)
♦

HALF
INT

Standard
Error
Code

Figure 4-2. Calling Sequence of NAM$RM_PORTAL

Q04J02D10056JLA

NAM$RM_PORTAL Errors:
E r ro r Name Desc r i p t i on
ESSCCM

ESWRIT
ESBNAM

ESFWTF

ESIREM

This routine may only be used at the supervisor
terminal.
You do not have access rights for this operation.
The entryname that you specified uses incorrect
syntax.
The specified portal was not found; delete operation
failed.
The specified portal mount must be on a local
directory.

Third Edition 4-41

Search Rules
5

This chapter describes the PRIMOS search rules facility. It provides a conceptual
overview of the search rules facility and describes how you can both modify
system-supplied lists of search rules and create your own search lists. The
search rules facility permits you to invoke a runtime search operation to locate
an object, rather than specifying the exact location of the object It is an
important programming tool to enhance the generality, flexibility, and
performance of many types of operations.

Search Rules and Search Lists

The PRIMOS search rules facility is a general-purpose mechanism for
specifying a search sequence. It enables you to prespecify locations for
PRIMOS to use when conducting a search. Each prespecified location is known
as a search rule. A search rule names a location that may contain the object of
the search. For example, a directory name would be a search rule when the
object of the search is a file.
Search rules are grouped into sequences known as search lists. A search list is
an area in memory that contains search rules, listed in sequential order. You
initially write the sequence of search rules into a text file known as a search
rules file. Before these search rules can be used, they must be copied from the
search rules file into a search list. The process of copying search rules into a
search list is known as setting the search list.
When using a search list, PRIMOS searches the first search rule in the search
list, then the second search rule in the list, and so forth until PRIMOS either
finds the object of the search or encounters the end of the search list.
One common use of search rules is to locate file system objects without requiring
the user to enter the fully qualified pathname. You can create different search
lists for different kinds of search operations. For example, you can establish a
search list to search multiple disk partitions for a top-level directory or establish
a search list to search multiple directories for a file.
You can invoke such a search by using a PRIMOS command, a CPL function, or
a subroutine call. The EXPAND_SEARCH_RULES command, for example,
takes a filename as input and uses the search rules facility to determine the

Third Edition 5-1

Advanced Programmer's Guide II: File System

absolute pathname of that file. The search rules facility is invoked automatically
by system software, such as the PRIMOS command processor and the BIND
program linker.
PRIMOS maintains a separate group of search lists for each process. This means
that users can customize their search lists to meet individual requirements.
Because a group of search lists is specific to a process, a program uses the search
lists of the user (or phantom) currently executing the program. To avoid possible
mismatches between programs and search lists, you can include in the program
calls to search rule subroutines that check or set your search lists. You cannot
use, read, or set search lists that belong to other users' processes. The use of
search lists is not affected by the user's current command level or attach point.

Default Search Lists
PRIMOS provides system default rules for five special-purpose search lists.
These five search lists are included in the search lists of every user on the
system. These search lists and their default rules are automatically set when a
user logs in or otherwise initializes a process. The five special-purpose search
lists are the following:

ATTACHS Searches directories to locate specified directory.
COMMANDS Searches directories to locate executable code files.
INCLUDES Searches directories to locate source code files.
BINARYS Searches directories to locate binary object code

files.
ENTRYS Searches EPF library files to locate entrypoints.

In addition to these five special-purpose search lists, you can set other,
general-purpose search lists for the duration of a process. These search lists are
referred to as user-defined search lists. During a process you can add, delete, or
modify the search rules in any of your search lists. Search rules that you add to a
search list (of any type) are referred to as user-specified search rules.

Advantages of Search Rules
Search rules provide several benefits:

Search rules enable users to locate items at runtime without knowing their
exact location. You specify this location information when you create the
search list. When the search list is used, PRIMOS searches these listed
locations for the object of the search. Once these search lists have been set,
you do not have to specify (or even know) the full pathname in order to

5-2 Third Edition

Search Rules

retrieve each item. Naive users can be supplied with search lists that make
knowledge of the file system architecture unnecessary.

• PRIMOS searches the rules in a search list in the listed order. By
rearranging the search rules in a list, you can improve performance in
searching for an item. This is particularly significant when searching
multiple disk partitions for a directory.

• PRIMOS stops searching when it finds a match. Because a search
operation uses the search rules to find the first occurrence of an item, you
can maintain multiple items with identical filenames on the system and
sequence the search rules to find the desired instance of that item. For
example, if you have several revisions of the same file in different
directories, you could list your search rules so that they always locate the
directory containing the most recent version of the file. When you create a
new version of the file, you simply add the name of that version's directory
to the top of the search list.

• PRIMOS searches only those items that are specified in the search list. By
changing the contents of a search list, you can restrict the scope of a search
to only those locations where the desired item is likely to be found. For
example, if a program always accesses a directory located on one of a
small group of disk partitions, you would create a search list to search only
those partitions, thus avoiding a search of all partitions on the system and
preventing access to inappropriate directories.

The use of search rules can greatly simplify program and terminal operations,
can increase the flexibility of programs and thus reduce maintenance overhead,
and can improve the performance of search operations. However, note that
failing to set a search list or modifying the rules in a search list can result in
unexpected changes to the execution of programs.

Search Rule Types

A search list can consist of three types of search rules: administrator rules,
system rules, and user-specified rules.

Administrator and System Search Rules
PRIMOS sets a group of search lists when you log in or otherwise initialize a
process. These search lists are initialized with administrator search rules and
system search rules. In each search list, administrator rules appear first, followed
by system rules. PRIMOS assigns the same administrator and system rules to
every process on the system.

Third Edition 5-3

Advanced Programmer's Guide ll: File System

Search List Types

Administrator search rules permit the System Administrator to regulate the use
of search rules throughout the system. System search rules provide all users on
the system with the same default search environment for normal PRIMOS
operations. The search lists that PRIMOS sets when you initialize a process can
contain just administrator rules, just system rules, or both administrator and
system rules.
When you set a search list to user-specified rules, PRIMOS automatically
prefaces your user-specified search rules with administrator and system rules.
You can override the placement of system rules in a search list. You cannot
override the placement of administrator rules in a search list.
Administrator and system search rules are located in search rules files found in
directory SEARCH_RULES* on the command device. This directory provides
search rules for ATTACHS, COMMANDS, ENTRYS, BINARYS, and
INCLUDES. The System Administrator can modify these search rules files and
can add administrator or system search rules files to this directory for other
search lists. If either an administrator or system search rules file exists in
SEARCH_RULES*, PRIMOS automatically sets a corresponding search list
whenever a process is initialized. Refer to the System Administrator's Guide,
Volume I: System Configuration for further details on administrator and system
search rules.

User-specified Rules
You can specify new search rules to add to existing search lists. You can also
specify search rules for new, user-defined search lists.
When adding rules to an existing search list, you can specify whether you wish
the system rules to preface your user-specified rules (the default), to be excluded
from the search list, or to be placed in a designated location in the search list. If
administrator rules have been established for a search list, they always precede
the user-specified rules and system rules. User-defined search lists have no
corresponding administrator or system search rules.

PRIMOS permits you to create your own search lists. It also provides support
for five special-purpose search lists: ATTACHS, COMMANDS, ENTRYS,
BINARYS, and INCLUDES.

User-defined Lists
You can use a user-defined search list to search directories for file system
objects (files, subdirectories, segment directories, and access categories). You

5-4 Third Edition

Search Rules

create a search list that consists of the pathnames of the directories that you wish
to search for these file system objects. Each directory pathname is a separate
search rule. The following are typical search rules for a user-defined search list.

glenn
glenn>project
alan>project
glenn>project>tests
glenn>status

How to create and name a user-defined search list is described later in this
chapter, in the section named Creating and Setting Search Rules.
You can use the EXPAND_SEARCH_RULES (ESR) command or a subroutine
call to search a user-defined search list. You specify the full name (name and
suffix) of the file system object that is the object of the search, and the name of
the search list. The ESR command returns the object's absolute pathname. The
OPSRS and OPSRSS subroutines locate and open the file.
You can use the SRSSETL subroutine to define the locater pointer values for
rules in user-defined search lists. This advanced operation permits you to freely
define the objects of a search. For further details, refer to the SRSSETL
subroutine in the Subroutines Reference II: File System.
You must set user-defined search lists during the process in which they are used.
User-defined search lists are automatically deleted at the conclusion of the
process.

ATTACHS

ATTACHS search rules let you predetermine the locations of file system objects
when you use unqualified pathnames. Before Rev. 23.0, PRIMOS searched only
the directories in the MFD of each specified disk partition. At Rev. 23.0,
PRIMOS can search any directory, no matter at what level in the file system
hierarchy the directory resides.
An ATTACHS search list is, in effect, a list of pathname prefixes. When
encountering an unqualified pathname, PRIMOS transforms it into a
fully-qualified pathname by using ATTACHS. PRIMOS adds each ATTACHS
search rule, one at a time, to the beginning of the unqualified pathname and then
checks the validity of the new pathname. If the now fully-qualified pathname is
an actual file system object, the search is over. If the pathname is not valid, the
search continues until the file system object is found or the ATTACHS search list
is exhausted.
Before Rev. 23.0, the only valid ATTACHS search rules were disk partition
names and valid keywords, including the special search rule called -added_disks
(described later in the section The -added_disks Keyword). In order to make

Third Edition 5-5

Advanced Programmer's Guide II: File System

partition names into fully-qualified pathnames, the partition names had to be
enclosed in angle brackets.

<DISKA>

At Rev. 23.0, ATTACHS search rules have been generalized so that any directory
can be specified as a valid rule. The directory can be anywhere in the file system
hierarchy from the highest level (the root directory) to the lowest level. This
means that many directories can be specified as search rules on the same disk
partition.
The following shows some typical search rules for a pre-Rev. 23.0 ATTACHS
search list:

<sysdsk>
<wrkdsk>
<bckdsk>
-added_disks

To use this search list, specify the name of a directory as the object of the search.
PRIMOS searches each of the partitions in the sequence specified. PRIMOS
stops searching when the first directory with the name you requested is found.
At Rev. 23.0, the ATTACHS functionality has been expanded so that a typical
search list might appear as follows:

<sysdsk>
<wrkdsk>myproj>mywork
<bckdsk>

<sysdsk>

The root directory is the first one
searched.
The disk partition (<sysdsk>) is
searched next. At Rev. 23.0, this syntax
is interpreted by PRIMOS as <sysdsk.
This means that syntax in existing
search lists does not have to be modi
fied if the entries have not changed.

5-6 Third Edition

Search Rules

<wrkdsk>mypro j>mywork The lower-level directory mywork is
searched next. Note that this search
rule is a fully-qualified pathname. This
provides you with the ability to attach
to lower levels in the file system hierar
chy.

<bckdsk> Another disk partition is searched next.
<bckdsk> is interpreted as <bckdsk by
PRIMOS.

If you have not set your own ATTACHS search list, the ATTACHS search list
defined by the System Administrator is in effect. This list resides in the file
<0>SEARCH_RULES*>ATTACHS.SR on the command device. If this file
does not exist, PRIMOS simply uses the added_disks keyword.
The EXPAND_SEARCH_RULES (ESR) command can be used to determine the
result of using the ATTACHS search list to convert an unqualified pathname into
a fully-qualified pathname. For example, issuing the command ESR MYDIR
might yield the fully-qualified pathname <SYSDSK>MYDIR.
The ATTACHS search list can be invoked automatically by other search lists.
This use of ATTACHS is described in the section ATTACHS Invoked by Other
Search Lists.

COMMANDS
You use the COMMANDS search list to search directories for command files. A
command file is any executable code file, such as a runfile or CPL file. A
COMMANDS search list should contain the pathnames of the directories that
you wish to search for executable code files. The following are typical search
rules for a COMMANDS search list:

cmdncO
glenn
glenn>project
alan>project
glenn>project>tests
glenn>status

The default for COMMANDS is the directory CMDNCO, which contains the
executable code files for PRIMOS commands. This default permits you to
execute PRIMOS commands without supplying complete pathnames.
Once you have created a COMMANDS search list, you can execute a command
file by simply typing its name, as if it were a PRIMOS command. For example,
if you include the search rule mydir>subdir in your COMMANDS search list,
you can execute the file mydir>subdir>myfile.run from any attach point by
simply typing the value for myfile. You do not have to specify the RESUME

Third Edition 5-7

Advanced Programmer's Guide II: File System

command or the filename suffix. PRIMOS searches each listed directory in
sequence. PRIMOS stops searching when it finds the first file with the name you
requested and (in order of preference) the suffix .RUN, .SAVE, .CPL, or a
static-mode runfile with no suffix.
You can also use the EXPAND_SEARCH_RULES (ESR) command to search
the COMMANDS search list. If you instruct ESR to use the COMMANDS
search list, you do not have to specify the .RUN, .SAVE, or .CPL filename
suffix. If you instruct ESR to find a filename with a .RUN, .SAVE, or .CPL
suffix, you do not have to specify use of the COMMANDS search list. ESR
returns the absolute pathname of the command.

INCLUDES
Some language compilers use the INCLUDES search list to search directories for
source code files that are to be included during program compilation. An
INCLUDES search list should contain the pathnames of the directories that you
wish to search for source code files. The following are typical search rules for
the INCLUDES search list:

g l enn
g lenn> too l s
g l e n n > p r o j e c t > t e s t s
alan>subsystem>tests

The compiler uses this search list when you specify the name of an include file
during program compilation. You do not have to specify the filename suffix.
The following compilers support INCLUDES: F77, C, Pascal, CBL, VRPG, and
PL/I. If no INCLUDES search list is set, or a compiler does not support
INCLUDES, the compiler assumes the include file is a source code file in the
current directory. Refer to the individual language manuals for further details.

BINARYS
The BIND linker uses the BINARYS search list to search directories for binary
(.BIN) files. A BINARYS search list should contain the pathnames of the
directories that you wish to search for binary files. The following are typical
search rules for a BINARYS search list:

g l enn
glenn>compi les
g lenn>pro jec t>compi les
alan>subsystem>compiles

5-8 Third Edition

Search Rules

When running BIND, you specify the filename of the BIND load file, and
PRIMOS searches the directories listed in BINARYS for that file. You do not
have to specify the .BIN filename suffix.
If no BINARYS search list is set, BIND assumes the load file is a binary file in
the current directory.

ENTRYS
You use the ENTRYS search list to search executable program format (EPF) or
static-mode libraries for entrypoints. Each of these libraries can contain one or
more entrypoints. The ENTRYS search list should contain the pathnames of the
library files that you wish to search for entrypoints. The following are typical
search rules for an ENTRYS search list.

- p r i m o s _ d i r e c t _ e n t r i e s
LIBRARIES*>SYSTEM_LIBRARY.RUN
LIBRARIES *>TTYCK$.RUN
LIBRARIES*>FORTRAN_IO_LIBRARY.RUN
LIBRARIES*>PASCAL_LIBRARY.RUN
GLENN>PRIV_LIB.RUN

The ENTRYS search list is used automatically when you execute a program that
contains a dynamic link to an entrypoint. This dynamic link is established using
BEND. During the BIND operation, you use the -DYNT option to specify the
name of the entrypoint. Then, during program execution, PRIMOS searches the
libraries listed in ENTRYS for the named entrypoint. For further details on this
use of ENTRYS, refer to the Programmer's Guide to BIND and EPFs.

Creating and Setting Search Rules

Establishing user-specified search rules is a two-step process. First, you create
a search rules file. A search rules file is a standard text file in which you write
one or more search rules. After you create a search rules file, you use that file to
set a search list. This set operation copies the rules in the search rules file into an
area in memory established for the search list. All search operations are
performed against the search list, not against the search rules file.

Creating a Search Rules File
You create a search rules file as a standard text file using EMACS or EDITOR.
The naming conventions for search rules files are as follows:

Third Edition 5-9

Advanced Programmer's Guide II: File System

• Use the name format: xxx.listname.SR. In this format, xxx can be any
name, listname is the name of the search list, and . SR is a suffix indicating
a search rules file.

• Do not use dollar signs ($) in the listname of user-defined search rules
files. Dollar signs are reserved for the listnames of special-purpose search
rules files.

For example, you would use a search rules file with the name

mylist.commands.sr

to set the special-purpose search list COMMANDS. You would use a search
rules file with the name

you r l i s t . l ookup .s r

to set the search list LOOKUP.
You can create multiple search rules files that can be used to set the same search
list. Only one file at a time can be used to set a particular list. (This file can,
however, contain keywords that draw upon the contents of other search rules
files.)
To place rules in a search rules file, use EMACS or EDITOR to specify one
search rule per line in the sequence that the items should be searched. A search
rule can be up to 128 characters in length. A search rule can include the disk
partition name, or it can begin with the top-level directory. If the disk partition
name is omitted, the search rules facility uses the ATTACHS search list to locate
the appropriate partition. This use of ATTACHS is described later in the section
ATTACHS Invoked by Other Search Lists.
You can include comments, blank lines, and leading and trailing blanks in a
search rules file. A comment begins with /* and continues to the end of the line.
Comments and blanks in the search rules file are not copied into the search list
during a set operation.
When creating a search rules file, you should avoid duplicating administrator
rules or system rules in your file. The one exception to this is if you plan to
override the automatic inclusion of system rules when you set the search list.

Setting Search Lists
A search rules file is used to set a search list. Search lists are set when

• You initialize a process
• You invoke a set operation

5-10 Third Edition

Search Rules

In both cases, the set operation copies search rules from one or more search rules
files into an area in memory allocated for the search list. Because the set
operation is a copy operation, the subsequent deletion or modification of the
search rules file does not affect the search list.
When a process is initialized, PRIMOS automatically performs set operations
that copy the search rules from the search rules files in the directory
<0>SEARCH_RULES* into search lists in memory. This creates a group of
default search lists for that process. PRIMOS sets each search list with search
rules copied from the administrator search rules file and the system search rules
file for that list. If one of these search rules files does not exist, PRIMOS sets the
search list with the contents of whichever of these search rules files does exist.
If a list has neither type of search rules file, no search list is set during process
initialization.
You can set a search list by using the SET_SEARCH_RULES (SSR) command
or the SRSSSR subroutine. You supply the pathname of your search rules file to
these set operations. You can also specify a name for the search list, or have the
set operation derive the search list name from the name of the search rules file.
If the search list did not previously exist, the set operation creates that search list.
If the search list did exist previously, the set operation either overwrites the old
search rules or appends the new search rules to the search list. The set operation
copies the rules in your search rules file into the search list. It may also copy
administrator and system rules into the search list, if the appropriate search rules
files are present in <0>SEARCH_RULES*.
A set operation does not check your search rules against the contents of the file
system. Therefore, you can set search rules that refer to partitions, directories,
and so on, that do not yet exist in your file system. When a search operation is
performed, PRIMOS uses each rule in a search list independently. An invalid
reference in one search rule does not affect other search rules or halt the search
operation. If a search rule names a nonexistent object, PRIMOS proceeds to the
next rule in the search list.
The SSR command returns a message if your search list has been set with
duplicate rules. The SSR command sets the search list regardless of the presence
of duplicate rules. A duplicate search rule in a search list can result in redundant
searches but does not otherwise affect the search operation.
The SSR command has an option that permits you to reset a search list to system
defaults. You can also use the SRSINIT subroutine to reset search lists to system
defaults. Other search rule subroutines are available to add or delete individual
search lists and search rules. These subroutines act directly upon the search Usts
in memory and do not affect the corresponding search rules files.
Once you have set a search list, you can use the LIST_SEARCH_RULES (LSR)
command to display the search list. You can also use the SRSREAD and
SRSNEXTR subroutines to read the rules set in a search list. The SSR and LSR
commands are further described in the PRIMOS Commands Reference Guide.

Third Edition 5-11

Advanced Programmer's Guide II: File System

Search rule subroutines are further described in the Subroutines Reference II:
File System.

Search Rule Keywords

A search rules file can contain keywords that perform specific operations.
Keywords that begin with a hyphen are directions to the search rules facility.
These directions are carried out either when you set the search list or when you
perform a search operation on that search list. Keywords enclosed in square
brackets are variables for which the appropriate literal is supplied when the
search list is used. The following are the available search rule keywords:

- i n s e r t
-system
-opt ional
-added_disks
-pub l i c
-stat ic_mode_l ibrar ies
-pr imos_direct_entr ies
[o r ig in_d i r]
[home_dir]
[referencing_dir]

You should place each keyword on its own line in a search rules file. Keywords
and search rules can be intermixed in any sequence within a search rules file.
Keywords can be written in either uppercase or lowercase.

The -insert Keyword
The -insert keyword specifies the pathname of another search rules file. When
you set the search list, PRIMOS inserts the contents of that search rules file at
the point indicated by the -insert keyword. By using this keyword, you can set a
large search list using several small search rules files. Search rules files can be
nested. The SET_SEARCH_RULES command rejects circular references, such
as a search rules file that includes itself.
Figure 5-1 is an example of the -insert keyword. In this example, nested -insert
keywords cause the contents of three search rules files to be included in the
MYLIST search list.

5-12 Third Edition

Search Rules

Search Rules Files

glenn>main.mylist.sr

glenn>current.worklist.sr

glenn>proj1>routines
glenn>proj1>tools
-insert glenn>history.sr
glenn>proj1>tests

glenn>history.sr

Cglenn>oldproj>tools

SET_SEARCH_RULESglenn>main.mylist

mylist

glenn
glenn>mysubs
glenn>proj1>routines
glenn>proj1>tools
glenn>oldproj>tools
glenn>proj1>tests
glenn>tests

Resulting Search List
QP5jOJD10056.3LA

Figure 5-1. Setting a Search List From Nested Search Rules Files Using the
-insert Keyword

The -system Keyword
The -system keyword allows you to change the placement of system rules in a
search list. By default, PRIMOS automatically places the system rules at the
beginning of the search list. To place the system rules elsewhere in the search
list, you specify the -system keyword at the desired location. When you set the
search list, the complete sequence of system rules is placed in your search list at
the location indicated by the -system keyword.
If you set the search list using the SET_SEARCH_RULES command, it is
necessary to suppress the automatic inclusion of the system rules at the top of the
list. To suppress automatic inclusion of system rules, use the

Third Edition 5-13

Advanced Programmer's Guide II: File System

SET_SEARCH_RULES command -no_system option. If you set the search list
using the SRSSSR subroutine, just specify the -system keyword at the desired
location. You do not have to suppress inclusion of system rules at the beginning
of the search list.
The example in Figure 5-2 inserts the system rules at the location indicated by
the -system keyword. The SET_SEARCH_RULES -no_system option
suppresses inclusion of the system rules at the beginning of the list.

glenn>main.command$.sr

<0>search_rule*>command$.sr

cmdncO
sys>submaster

System Search Rules File

SET_SEARCH_RULES glenn>main.command$ -no_system

COMMANDS

glenn
glenn>mysub
cmdncO
sys>submaster
glenn>tests

Resulting Search List

Q05.02D100563LA

Figure 5-2. Setting a Search List With User and System Default Search
Rules Using the -system Keyword

If you do not suppress the prefacing of system rules (by using the
SET_SEARCH_RULES -no_system option) PRIMOS ignores the -system
keyword, and places the system rules at the beginning of the file.
Do not use the -system keyword in a search rules file for the ATTACHS search
list. Instead, use the -added_disks keyword or set your own attach search rules
to perform the equivalent operation.

5-14 Third Edition

Search Rules

The -optional Keyword
The -optional keyword specifies a rule that must be enabled before it can be
used by PRIMOS. In your search rules file, you write the -optional keyword and
the rule that must be enabled on the same line, as shown in the following search
rules file:

g l e n n > t o o l s
-op t iona l g lenn>tes ts
g l e n n > r o u t i n e s

When you set a search list, all optional search rules are disabled. PRIMOS skips
over those rules when searching the list. The LIST_SEARCH_RULES
command and most subroutines do not display the disabled search rules in the
search list. For example, if you set a search list using the search rules file above,
and then issue a LIST_SEARCH_RULES command for that search list, the
following search rules are displayed:

g lenn> too l s
g l e n n > r o u t i n e s

You can enable optional search rules in a search list by using the SRSENABL
subroutine. When enabled, an optional search rule appears in the search list as
an ordinary rule. For example, if you enable the glenn>tests optional search rule
and then issue a LIST_SEARCH_RULES command, the following search rules
are now displayed:

g l e n n > t o o l s
g l e n n > t e s t s
g l e n n > r o u t i n e s

Optional search rules can be set in any search list, including system and
administrator search lists. You can specify any search rule or search rule
keyword as an optional search rule, except for the keywords -system and -insert.
Optional rules in a search list can be repeatedly enabled and disabled. One
application of optional search rules is to establish search rules that are used only
by a particular program. You enable the optional rules at the beginning of
program execution and disable the optional rules at the end of program
execution. For further details, refer to SRSENABL in the Subroutines Reference
II: File System.

The -added_disks Keyword
The -added_disks keyword is used in ATTACHS search lists. Before Rev. 23.0,
the PRIMOS file system used -added_disks to search potentially all of the added

Third Edition 5-15

Advanced Programmer's Guide II: File System

disk partitions in order to resolve an unqualified pathname. PRIMOS did this by
using the disk table in order to determine the list of disk partitions to search.
At Rev. 23.0, however, the file system name space is organized as a
singly-rooted tree hierarchy, which has the ability to accept disk partitions
mounted at different levels in its structure. This means that the use of
-added_disks is no longer as straightforward as it once was. In addition, if the
Name Server is running on your system, the number of added disk partitions in
the common file system name space can grow to be quite large.
Therefore, the -added_disks keyword at Rev. 23.0 has different meanings,
depending upon on whether the Name Server is running or not. The different
meanings of-added_disks are discussed in the sections following.
-added_disks Without the Name Server: If the Name Server is not
running, the file system uses the disk table to determine which disks to search.
First, the local disks are searched in the order in which they appear in the disk
table. Second, the remote disks are searched in the order in which they appear in
the disk table. This functionality is unchanged from previous revisions of
PRIMOS, with one exception: at Rev. 23.0 and beyond, disk partitions that are
not mounted in the root directory are not searched.
-added_disks With the Name Server: If the Name Server is running, the
file system uses the disk table and the Global Mount Table (GMT) to determine
which disks to search. (Use the LIST_MOUNTS command, described in the
PRIMOS User's Release Document, to examine the contents of the GMT.) First,
the local disks are searched in the order in which they appear in the disk table.
Second, the file system uses the GMT to determine the remote disks to search.
There are several factors to consider when you are deciding upon the use of
-added_disks on a system that has the Name Server running:

• The order of the GMT is determined by the Name Server's internal
replication algorithm. This order may change over time as disks on local
and remote systems are added and shut down. Thus, it is not possible to
directly affect the order in which remote disks are searched. If your system
is running the Name Server, and the order in which the disks are searched
is important to you, then you should explicitly define those disks in an
ATTACHS search list without the -added_disks keyword. If you do not
define your own ATTACHS search list, then -added_disks is used by
default.

• The disk partitions that are mounted at a level lower than the root directory
are not searched. If you want lower-level mounts searched, then you must
explicitly add them to your ATTACHS search list.

• If the Name Server is running, the number of disk partitions in the common
file system name space is probably greater than the number of disks added
manually to the local machine. At Rev. 23.0, a common file system name
space can contain up to 1280 disks, and this size can affect the performance
of attach-scan operations. The -added_disks keyword is usually specified

5-16 Third Edition

Search Rules

as the last search rule in an ATTACHS search list, and this keyword
searches all of the disk partitions mounted in the root directory, including
those that have already been searched using previous ATTACHS search
rules.

In light of the above factors, it is recommended that you do not use the
-added_disks keyword when the Name Server is running. Instead, use the
ATTACHS search list without -added disks.

The -public Keyword

Registered EPFs do not reside in the file system, but instead are contained in a
special database. In order to be able to execute registered EPFs, use the -public
search rule.

• To execute registered program EPFs, put -public in your COMMANDS
search list so that PRIMOS searches the registered EPF database for
command names.

• To execute an EPF that dynamically links to registered library EPFs, put
the -public search rule in your ENTRYS search list, so that PRIMOS
searches the registered library EPFs for entrynames.

PRIMOS searches the named registered EPFs using the order you have specified,
then searches all other registered EPFs. For more information on the -public
search rule, see the Advanced Programmer's Guide I: BIND and EPFs.

The -static_mode_libraries Keyword
The -static_mode_libraries keyword causes PRIMOS to search the static-mode
libraries. The -static_mode_libraries keyword is only used in the ENTRYS
search list. When you set an ENTRYS search list, the set operation copies the
-static_mode_libraries keyword from the search rules file into the search list.
When PRIMOS uses the ENTRYS search list and encounters the
-static_mode_libraries keyword, it searches the static-mode libraries for the
desired entrypoint. Refer to the Programmer's Guide to BIND and EPFs for
further details on the use of ENTRYS.

The -primos_direct_entries Keyword
The -primos_direct_entries keyword causes PRIMOS to search the PRIMOS
system calls. The -primos_direct_entries keyword is only used in the ENTRYS
search list. Normally, this keyword is set as an administrator rule in the
ENTRYS search list. When PRIMOS uses the ENTRYS search list and
encounters the -primos_direct_entries keyword, it searches the PRIMOS system

Third Edition 5-17

Advanced Programmer's Guide II: File System

calls for the desired entrypoint. Refer to the Programmer's Guide to BIND and
EPFs for further details on the use of ENTRYS.

The [originjdir] Keyword
The [origin_dir] keyword causes PRIMOS to search the user's origin directory
(that is, the user's initial attach point). This keyword is executed when the
search list is used. When you set a search list, the set operation copies the
[origin_dir] keyword from the search rules file into the search list. When
PRIMOS uses the search list and encounters the [origin_dir] keyword, it searches
the user's origin directory. The [origin_dir] keyword can be used in all search
rules files (including search rules files for administrator and system rules) with
the exception of ATTACHS.
The [origin_dir] keyword can be used as a complete search rule or as a
component of a pathname in a search rule, as shown in the following sample
search rules file:

[o r i g in_d i r]
glenn>tools
[o r ig in_d i r]> too ls
glenn>subr

The [home_dir] Keyword
The [home_dir] keyword causes PRIMOS to search the user's home directory
(that is, the user's current attach point). This keyword is executed when the
search list is used. When you set a search list, the set operation copies the
[home_dir] keyword from the search rules file into the search list. When
PRIMOS uses the search list and encounters the [home_dir] keyword, it searches
the user's current attach point at the time of the search operation. The
[home_dir] keyword can be used in all search rules files (including search rules
files for administrator and system rules) with the exception of ATTACHS. Using
[home_dir] in the ENTRYS search list can produce unexpected results, and is
therefore not recommended.
The [home_dir] keyword can be used as a complete search rule or as a
component of a pathname in a search rule, as shown in the following sample
search rules file:

[home_dir]
glenn>tools
[home_dir]>tools
glenn>subr

5-18 Third Edition

Search Rules

The [referencingjdir] Keyword
The [referencing_dir] keyword causes PRIMOS to search a pathname supplied
by the user. When you set a search list, the set operation copies the
[referencing_dir] keyword from the search rules file into the search list. When
the search list is used, the operation that uses the search list should also supply a
pathname to substitute for the [referencing_dir] keyword. If an operation that
uses the search list does not supply a pathname, PRIMOS ignores the
[referencing_dir] keyword and proceeds to the next rule in the search list. The
[referencing_dir] keyword can be used in all search rules files (including search
rules files for administrator and system rules) with the exception of ATTACHS.
The EXPAND_SEARCH_RULES (ESR) command and the OPSRS and
OPSRSS subroutines have optional arguments that supply a pathname to the
[referencing_dir] keyword. PRIMOS substitutes this pathname for every
instance of [referencing_dir] in the search list and then performs the search
operation. The [referencing_dir] keywords revert to null values at the
completion of the search operation.
Compilers that use the INCLUDES search list automatically supply values to the
[referencing_dir] keyword. For further details concerning the use of
[referencing_dir] in INCLUDES search lists, refer to the individual language
manuals.
The [referencing_dir] keyword can be used as a complete search rule or as a
component of a pathname in a search rule, as shown in the following sample
search rules file:

[referencing_dir]
glenn>tools
[re ferenc ing_di r]> too ls
glenn>subr

Accessing Search Lists
You can use search lists to conduct searches from the PRIMOS command
environment, from CPL programs, or through subroutine calls from user
programs. The five system-defined search lists are also accessible by specific
system software. The ATTACHS search list can be accessed by other search
lists.

PRIMOS Command Environment
The EXPAND_SEARCH_RULES (ESR) command uses a search list to locate
the requested item and returns the absolute pathname of the object to the user's

Third Edition 5-19

Advanced Programmer's Guide II: File System

terminal. When you issue an ESR command, you specify which search list
should be used for the search. If you do not specify which search list to use,
ESR selects a search list, based on the suffix of the sought item. If the object of
the search is not located, ESR returns the value $ERROR$. The ESR command
is further described in the PRIMOS Commands Reference Guide.

CPL Programs
EXPAND_SEARCH_RULES (ESR) can be issued as a CPL function from
within a CPL program. The ESR CPL function has the same syntax and options
as the ESR PRIMOS command. When issued as a CPL function, ESR returns
the absolute pathname to a variable within the CPL program.

Program Subroutines
The search rules facility supports 18 search rule subroutines. Most of these
subroutines perform operations on the search lists themselves. However, two
subroutines (OPSRS and OPSRSS) use the search rules to locate and open a file.
These two subroutines can also check for the existence of a file system object
and, under certain circumstances, create a new file system object if the specified
object does not exist.
The available search rule subroutines are as follows:
Routine
OPSRS

SRSABSDS

SRSADDB
SRSADDE

SRSCREAT
SR$DEL
SRSDSABL

SRSENABL

Function
Locates a file using a search list and opens the file.
Creates the file if the file sought does not exist.
Disables an optional search rule. Used to disable
rules that have been enabled using SRSENABL.
This subroutine absolutely disables an enabled rule,
regardless of how many times the rule has been
enabled. Compare with SRSDSABL.
Adds a rule to a search list before a specified rule.
Adds a rule to the end of a search list, or after a
specified rule.
Creates a search list.
Deletes a search list.
Disables an optional search rule that was enabled by
SRSENABL. Disables a single SRSENABL
operation. Compare with SRSABSDS.
Enables an optional search rule. Enabled rules can
be disabled using SRSDSABL or SRSABSDS.

5-20 Third Edition

SRSEXSTR
SR$FR LS

SRSINIT
SRSLIST
SRSNEXTR
SRSREAD
SRSREM
SRSSETL
SRSSSR

Search Rules

Determines if a search rule exists.
Frees list structure space allocated by SRSLIST or
SRSREAD.
Initializes all search lists to system defaults.
Returns the names of all defined search Usts.
Reads the next rule from a search list.
Reads all of the rules in a search list.
Removes a search rule from a search list.
Sets the locater pointer for a search rule.
Sets a search list using a user-defined search rules
file.

These subroutines are further described in the Subroutines Reference II: File
System.

ATTACHS Invoked by Other Search Lists
The only search list which requires that pathnames be fully-qualified is the
ATTACHS search list. The other system search lists can contain pathnames
which are unqualified. In order to resolve unqualified pathnames found in other
system search lists, PRIMOS uses the ATTACHS search list.
Adding unqualified pathnames to search lists can greatly affect their
performance, especially if there are many partitions to search. Searching for a
file system object with an unqualified pathname is always slower. You should
carefully consider the tradeoff between the flexibility of unqualified pathnames
and the better performance of fully-qualified pathnames.

Third Edition 5-21

Attach Points
6

This chapter describes, in detail, the initial, home, and current attach points, and
then describes subroutines that are used to manipulate attach points.

The Initial Attach Point

When a new user is added to the system, the System Administrator or the Project
Administrator specifies an initial attach point and usually creates an origin
directory for the new user.
PRIMOS attaches the user's process to the origin directory during the login
procedure; when the procedure terminates, the user's initial, home, and current
attach points arc all set to the origin directory, unless the login procedure itself
(or an external program that it may call) has changed the home or current attach
point, or both.
During a terminal session, the user may reset his or her home and current attach
points to the origin directory by issuing the ORIGIN command. Your program
may also reset the home and current attach points by using the ATSOR
subroutine. The ATSOR subroutine allows your program to reset just the current
point or both the current and home attach points to the origin directory. Figure
6-1 illustrates the calling sequence for the ATSOR subroutine.
If the key argument is KSSETH, both the home and current attach points are reset
to the origin directory. If the key argument is KSSETC, only the current attach
point is reset to the origin directory.

Third Edition 6-1

Advanced Programmer's Guide II: File System

Reset Current (and, Optionally, Home) Attach Point to Origin Directory

/ KSSETH \
\ K$SETC J

HALF
INT

AT$OR (key, code)

HALF
INT

Standard
Error
Code

Q06 DID10056 3LA

Figure 6-1. Calling Sequence of AT$OR

An output argument, code, informs your program of the success or failure of the
operation. If code is 0, the operation was entirely successful. Otherwise, code is
always positive. After a call to ATSOR to attach to the origin directory, code
may have one of many values. The Advanced Programmer's Guide: Appendices
and Master Index contains a comprehensive list of all standard file system error
codes.
Error codes specific to this operation are:

6-2 Third Edition

Attach Points

K e y w o r d V a l u e M e a n i n g
ESNATT 7 No top-level directory attached. This error usually occurs

only when the disk on which the origin directory resides
has been removed from the system, as in disk shut down.
Once a disk has been shut down, all origin directories re
siding on that disk are lost. These users can reestablish
their origin directories only by logging in after start up.

ESSHDN 121 The disk has been shut down. The disk on which the ori
gin directory resides has been shut down. The disk is no
longer available for use until the System Operator uses the
ADDISK command to add the disk again. After this is
done, the user must log in again to reestablish his or her
origin directory.

The Home Attach Point

The home attach point essentially identifies the user's working directory.
Initially, following user login, the home attach point is the same as the initial
attach point. To reset the current attach point to the home attach point from
within your program, use the ATSHOM subroutine, shown in Figure 6-2.

Reset Current Attach Point to Home Directory

AT$HOM {code)

HALF
INT

Standard
Error
Code

Figure 6-2. Calling Sequence of AT$HOM

QD6JD2DJ0056JLA

Third Edition 6-3

Advanced Programmer's Guide ll: File System

An output argument, code, informs your program of the success or failure of the
operation. If code is 0, the operation was entirely successful. Otherwise, code is
always positive. After a call to ATSHOM to attach to the home directory, code
may have one of many values. The Advanced Programmer's Guide: Appendices
and Master Index contains a comprehensive list of all standard file system error
codes.
Error codes specific to the ATSHOM subroutine are

K e y w o r d V a l u e M e a n i n g
E$NATT 7 No top-level directory attached. This error usually occurs

only when the disk on which the home directory resides
has been removed from the system, as when a disk is shut
down. Once a disk has been shut down, all home directo
ries residing on that disk for all currently logged-in users
are lost. These home directories can be reestablished by
the users only by issuing an ATTACH command after the
disk is started up again.

E$SHDN 121 The disk has been shut down. The disk on which the
home directory resides has been shut down (using the
SHUTDN command as described in the Operator's Guide
to System Commands). The disk is no longer available for
use, until the System Operator uses the ADDISK com
mand to add the disk again. After this is done, the user
must issue the ATTACH command again to reestablish his
or her home directory.

The Current Attach Point

The current attach point is essentially the program's working directory. Initially,
the current attach point is the same as the initial and home attach points. A
program can change the current attach point by calling one of many file system
subroutines:

Subroutine Use

AT$ Attaches the current (optionally home) attach point to the
directory specified by pathname. Similar to the ATTACH
pathname command.

AT$ABS Attaches the current (optionally home) attach point to the
specified directory on the specified root entry disk partition.
Similar to the ATTACH <partition>dirname command.

6-4 Third Edition

Attach Points

AT$ANY Attaches the current (optionally home) attach point to the
specified directory on the first disk partition found to have the
directory that was specified. The search is done using the
ATTACHS search rules. Similar to the ATTACH dirname
command.

AT$HOM Attaches the current attach point to the home directory, as
described earlier in this chapter. Similar to the ATTACH
command.

AT$OR Attaches the current (optionally home) attach point to the origin
directory, as described earlier in this chapter. Similar to the
ORIGIN command.

AT$REL Attaches the current (optionally home) attach point to the
specified lower-level directory of the current directory. Used to
attach downward in a directory tree. Similar to the ATTACH
*>dirname command.

AT$ROOT Attaches the current (optionally home) attach point to the root
directory. Synonymous with the ATTACH < command.

All of the above subroutines replace an obsolete subroutine named ATCHSS that
performed all of the attach functions in one (rather complicated) interface. The
subroutines listed above are described later in this chapter; the ATCHSS
subroutine is described in detail in Appendix A of Subroutines Reference II: File
System.

Operations That Reset the Current Attach Point
Because the current attach point is used in so many file system operations, it is
often reset even when errors occur. For example, if a call to ATS is made to set
the current attach point to FRODO>FINGER>FOOD, and the FINGER
lower-level directory does not exist in the FRODO directory, an error code of
ESFNTF (Not found) is returned, and the current attach point is reset to the home
directory, independent of what it was before the call was made.
Similarly, a mistyped command resets the current attach point to the home
directory. In fact, the only way to avoid resetting the current attach point while
at PRIMOS command level is to use only internal commands, such as OPEN,
STATUS, DUMP_STACK, and so on. (The PRIMOS Command Reference Guide
lists internal commands.)
Commands such as LD, DELETE, COPY, EMACS, and USAGE reset the
current attach point. In most cases, resetting the current attach point is usually
not a problem. Resetting the current attach point is a problem if a program
activation has been suspended (as with, for example, Control-P) just when the
current attach point is different from the home attach point. In this case,
restarting the suspended program may produce irrational behavior. Programs

Third Edition 6-5

Advanced Programmer's Guide II: File System

that make heavy use of the current attach point can expect to encounter problems
resulting from program interruptions; even programs that do not explicitly use
the current attach point can possibly encounter problems when calling
subroutines that handle pathnames (such as SRSFXS), because these subroutines
use the current attach point and may also be interrupted.
In addition, anytime a pathname is processed by the file system, the current
attach point is reset to the home directory. For example, if the DIRSCR
subroutine, described in Chapter 8, Data Storage and Retrieval, is called with the
pathname FRODO>THUMB, the current attach point is implicitly reset to the
home directory.
File system subroutines that accept filenames but not pathnames assume that the
specified file is in the current directory. Similar subroutines perform their
operations in the current directory, although they do not actually accept
filenames as arguments. In both cases, these subroutines are frequently referred
to as file system primitives. The use of these primitives rarely changes the
current attach point. Among the PRIMOS file system primitives are the
following subroutines:

ACSRVT PHANTS
CNAM$$ PHNTMS
COMI$$ REST$$
COMOSS RESUSS
FILSDL SATR$$
GPAS$$ SAVE$$
GPATHS SPASSS
SRCH$$

Note CREASS and CREPWS, which accept only filenames, are considered obsolete at
PRIMOS Rev. 20.2. Although CREASS and CREPWS are still supported, programs
should use DIRSCR, which accepts pathnames, beginning with Rev. 20.2.

All other subroutines that operate either explicitly or implicitly on a pathname
(any file system name containing at least one < or > character) reset or change
the current attach point.

6-6 Third Edition

Attach Points

Functions Used To Manipulate Attach Points

In addition to the subroutines described earlier in this chapter, several
subroutines are provided to allow a running program to manipulate the user's
attach points. These are:

Subroutine Action
AT$ Attaches to a pathname
ATS ABS Attaches to a directory on a specified disk partition
ATSANY Attaches to a directory on any startcd-up disk partition
ATSREL Attaches to a subordinate directory (relative attach)
ATSROOT Attaches to the root directory
GPATHS Returns the complete pathname of the initial, home, or current

directories
SRCHSS Opens the current directory for reading

The AT$ Subroutine
To attach to a specific directory by pathname, use the AT$ subroutine. The AT$
subroutine parses a pathname, and passes the call to the appropriate AT$-type
subroutine (ATSABS, ATSANY, ATSHOM, ATSROOT, or ATSREL, described
below) to perform the actual attaching.
The ATS subroutine may be used to change only the current directory or both the
home and current directories. It may return any of the error codes that the other
four subroutines can return, with one additional error code — ESITRE (Illegal
treename). This error code indicates an invalid pathname.
The subroutine to which the call is passed by ATS depends on the form of the
pathname. The several forms and their corresponding implementations are:

Third Edition 6-7

Advanced Programmer's Guide 11: File System

F o r m R e s u l t
< Passed to ATSROOT to attach to the root directory.
<*> Passed to ATSABS to attach to the current partition's MFD (the

MFD containing the home directory in effect at the time of the
AT$ call). The < in this special syntax does not indicate the root.

<dir>...
<dir Passed to ATSROOT to attach to the specified disk partition,

followed by calls to ATSREL to attach to directories following
the <dir> portion of the pathname.

*>... Passed to ATSHOM to attach to the home directory, followed by
calls to ATSREL to attach downward.

dir Passed to ATSANY to attach to a top-level directory, that is, a
directory immediately subordinate to a partition's MFD.

dir>... Passed to ATSANY to attach to an absolute pathname, the first
element being a top-level directory.

(null) A null pathname has the same effect as using the ATSHOM call,
described later in this chapter.

Note PRIMOS treats a single (simple) objectname in one of two ways, depending upon
whether or not the objectname is a directory. When you use the ATTACH command with
simple object name, that object is a root directory entry. With other commands, a simple
objectname identifies that object as a file in the current directory.
This distinction is seen when comparing the following two PRIMOS commands:

ATTACH FRODO
SLIST FRODO

The ATTACH command searches all root directory entries looking for an entry named
FRODO. The SLIST command searches for a file named FRODO in the home (current)
directory. (When the SLIST command is issued, the current attach point is reset to the
home directory by the operation of searching the command directory, CMDNCO, for the
SLIST program.)

Figure 6-3 illustrates the calling sequence of AT$.

6-8 Third Edition

Attach to Directory by Pathname

Pathname of
Target Directory

(null string means
home directory)

KSSETH \
KSSETC f

HALF < = 128
INT STRING

W l r

AT$ [key, name, code)

HALF
INT

Standard
Error
Code

Attach Points

QP6J03D100563U.

Figure 6-3. Calling Sequence of AT$

Third Edition 6-9

Advanced Programmer's Guide II: File System

The ATSABS Subroutine
Before Rev. 23.0, ATSABS allowed you to set the attach point to a specified
top-level directory on a given partition. At Rev. 23.0, however, a disk partition
may be logically mounted anywhere on the file system tree, not just directly
below the root. This means the directory you are seeking may no longer be
"top-level." Therefore, ATSABS cannot always be used to reference top-level
directories.
In the pre-Rev. 23.0 file system, the partition and directory name arguments
were treated as if the pathname <partition_name>directory_name was used. This
is still true at Rev. 23.0 as long as the disk partition is mounted in the root
directory as directory partition name. However, if the disk is mounted in a
directory below the root directory, you cannot use ATSABS to attach to top-level
directories on that lower-mounted partition. Instead, use ATS.
You may specify the root-entry argument to the ATSABS subroutine by using
any of the following:

• A partition whose name is mounted in the root
• The partition on which the current directory resides
• The partition corresponding to logical disk 0
• The partition corresponding to a particular logical disk number

When your program calls ATSABS, it provides:

• A key that specifies whether the home attach point is to be set
• The identity of the directory's partition, in any of the forms listed above
• The name of the directory itself

The ATSABS subroutine attempts to set the current attach point to the specified
directory on the specified partition, and returns a code indicating whether the
operation was successful. You supply the partition argument and the directory
argument, and ATSABS supplies the root-directory symbol (<) and the
subordinate object symbol (>).
If the operation fails, no changes are made to the attach points. If the operation
succeeds, the home attach point is also set to the current attach point if specified
by the key.
Figure 6-4 illustrates the calling sequence of the ATSABS subroutine.

6-10 Third Edition

Attach Points

Attach to Top-level Directory of Specified Partition

Name or Logical Disk
Number of Partition

(such as 'PUBS' or '27,)1
Null String (Logical Disk 0),

or '*' (disk of current attach point)

f K$SETH 1
\ KSSETC J

Top-level Directory Name
With Optional Password
(separated by one space)

or Null String (implying MFD)

HALF
INT

< = 32
STRING

< = 39
STRING

AT$ABS (key, partition, directory, code)

HALF
TNT

Standard
Error
Code

Q06MDJ0056JLA

Figure 6-4. Calling Sequence of AT$ABS

Third Edition 6-11

Advanced Programmer's Guide II: File System

The Key: Your program sets key to one of the following:

Keyword Value Meaning
KSSETC Set only the current attach point.

KSSETH Set both the current and home attach points.

The Partition: Your program passes, as a character string, the name of the
directory which represents the partition. A null partition name specifies logical
disk 0 (the command device). A partition name of * specifies the partition on
which the current directory resides. (Note that * means the root when you are
attached to the root.) A character string that is an unsigned octal number
specifies the logical disk number. Otherwise, part name identifies the desired
partition. Since part name is the name of a root entry directory, its name can
contain up to 32 characters.

The Directory: Your program passes the name of the directory to attach to as
a character string. To specify a password, append it to the directory name with a
single space separating the directory name and the password.
If your program passes a null directory name, ATSABS attaches to the MFD of
the specified partition.
The Error Code: An output argument, code, informs your program of the

success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to ATSABS to attach
to a directory, code may have one of many values. The Advanced Programmer's
Guide: Appendices and Master Index contains a comprehensive list of all
standard file system error codes. Error codes specific to this operation are

K e y w o r d V a l u e M e a n i n g
E$BPAR 6 Bad parameter. The length of the directory name as

passed by the calling program is a negative number or is
greater than 39 (including an optional directory password).

E$NATT 7 No top-level directory attached. This error usually occurs
when the partition name is * and the partition on which the
current directory resides is removed from the system, as
when a disk is shut down. Use one of the subroutines de
scribed in this chapter to reestablish a current attach point.

ESFNTF 15 Not found. The specified partition does not exist, or the
specified directory does not exist on that partition.

ESBNAM 17 Illegal name. The partition name must be between 0 and
32 characters in length. The directory name must also be
between 0 and 32 characters in length (inclusive), option
ally followed by a single space and a password from 1 to 6
characters long (inclusive).

6-12 Third Edition

Attach Points

Example: The following PL/I statement sets the home and current attach
points to the directory named ORANGE on the partition named RHYMES:

call at$abs(k$seth,'RHYMES' , 'ORANGE',code);

The ATSANY Subroutine
ATSANY attaches to the first instance of a particular directory by searching
through a list of directories. ATSANY uses ATTACHS search rules to determine
which directories are examined to find the specified directory. (See the
discussion on ATTACHS search rules in Chapter 5, Search Rules.) Before Rev.
23.0, this list of directories could only be MFDs on specified disk partitions. At
Rev. 23.0 and beyond, the list of directories can be directories at any level in the
file system hierarchy.
When calling ATSANY, your program provides

• A key that specifies whether the home attach point is to be set
• The name of the directory to search for

The ATSANY subroutine attempts to set the current attach point to the specified
directory in the first directory it finds that has the specified directory. It returns a
code indicating whether the operation was successful. If the operation fails, no
changes are made to the attach points. If the operation succeeds, the home attach
point is also set to the current attach point if specified by the key.
Figure 6-5 illustrates the calling sequence of the ATSANY subroutine.

Third Edition 6-13

Advanced Programmer's Guide ll: File System

Attach to Top-level Directory of Any Partition

Top-level Directory NameWith Optional Password
(separated by one space)

KSSETH \
K$SETC J

HALF < = 39
DMT STRING

AT$ANY (key, name, code)

HALF
INT

Standard
Error
Code

Figure 6-5. Calling Sequence of AT$ANY

Q06JDSD10056 JLA

6-14 Third Edition

Attach Points

The Key: Your program sets key to one of the following:

K e y w o r d V a l u e M e a n i n g

KSSETC 0 Set only the current attach point.

KSSETH 1 Set both the current and home attach points

The Directory: Your program passes the name of the directory to attach to as
a character string. To specify a password, append it to the directory name with a
single space separating the directory name and the password.
The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to ATSANY to
attach to a partition-level directory, code may have one of many values. The
Advanced Programmer's Guide: Appendices and Master Index contains a
comprehensive list of all standard file system error codes. Error codes specific to
this operation are:

K e y w o r d V a l u e M e a n i n g
ESBPAR 6 Bad parameter. The length of the directory name as

passed by the calling program is a negative number or is
greater than 39 (including an optional directory password).

ESBNAM 17 Illegal name. The syntax of the directory name as
supplied by the calling program is not correct The direc
tory name must be between 0 and 32 characters in length,
optionally followed by a single space and a password. See
the PRIMOS User's Guide for a description of the legal
syntax for objectnames.

ESNFAS 189 Top-level directory not found or inaccessible. The speci
fied directory could not be found, or resides on a disk par
tition that cannot be accessed by the user.

Example: The following PL/I statement sets the home and current attach
points to the directory named ORANGE on the first partition found to contain a
directory named ORANGE:

call at$any(k$seth,'ORANGE',code);

Third Edition 6-15

Advanced Programmer's Guide II: File System

The ATSREL Subroutine
Use the ATSREL subroutine to attach down to a directory that is subordinate to
the current directory. The subroutine searches through the current directory for
the specified lower-level directory, and attaches to it as the new current (and
optionally home) directory.
When calling ATSREL, your program provides

• A key that specifies whether the home attach point is to be set
• The lower-level directory to be attached to

The ATSREL subroutine attempts to set the current attach point to the specified
lower-level directory of the current directory, and returns a code indicating
success or failure. If the operation fails, the attach points are not changed. If the
operation succeeds, the home attach point is also set to the current attach point if
specified by the key.
Figure 6-6 illustrates the calling sequence of the ATSREL subroutine.

6-16 Third Edition

Attach Points

Attach to Subdirectory of Current Directory

Lower-level Directory Name
With Optional Password
(separated by one space)

f KSSETH \
"[KSSETC J

HALF
INT

< = 39
STRING

AT$REL (key, name, code)

HALF
INT

Standard
Error
Code

Q06j06£)10056JIA

Figure 6-6. Calling Sequence of AT$REL

Third Edition 6-17

Advanced Programmer's Guide II: File System

The Key: Your program sets key to one of the following

K e y w o r d V a l u e M e a n i n g
KSSETC 0 Set only the current attach point.

KSSETH 1 Set both the current and home attach points.

The Lower-level Directory: Your program passes the name of the
lower-level directory to attach to as a character string. To specify a password,
append it to the lower-level directory name with a single space separating the
lower-level directory name and the password.
The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to ATSREL to attach
to a lower-level directory, code may have one of many values. The Advanced
Programmer's Guide: Appendices and Master Index contains a comprehensive
list of all standard file system error codes. Error codes specific to this operation
are

K e y w o r d V a l u e M e a n i n g
E$BPAR 6 Bad parameter. The length of the lower-level directory

name as passed by the calling program is a negative num
ber or is greater than 39 (including an optional lower-level
directory password).

E$NATT 7 No top-level directory attached. This error can occur only
when the partition on which the current directory resides is
removed from the system, as when a disk is shut down.
Use one of the ATS subroutines to reestablish a current
attach point.

E$BNAM 17 Illegal name. The syntax of the lower-level directory
name as supplied by the calling program is not correct.
The lower-level directory name must be between 0 and 32
characters in length, optionally followed by a single space
and a password. See the PRIMOS User's Guide for a de
scription of the legal syntax for objectnames.

Example: The following PL/I statement sets the home and current attach
points to the lower-level directory named JUICE of the current directory:

call at$rel(k$seth,'JUICE' , code);

6-18 Third Edition

Attach Points

The ATSROOT Subroutine
ATSROOT lets you attach to the root directory by means of the calling program.
Figure 6-7 illustrates the calling sequence of ATSROOT.
The Key: Your program sets key to one of the following

Keyword Value Meaning

KSSETC Set only the current attach point.

KSSETH Set both the current and home attach points.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was successful.

Attach to the Root Directory

f K$SETH 1
I K$SETC J

♦
HALF
INT

AT$ROOT (key, code)

HALF
INT

Standard
Error
Code

QP6J07£>100563L\

Figure 6-7. Calling Sequence of AT$ROOT

Third Edition 6-19

Advanced Programmer's Guide II: File System

Example: The following PL/I statement sets the current attach point to the
root directory:

call at$root(k$setc,code);

The GPATHS Subroutine
It is sometimes useful for your program to be able to determine the full pathname
of the initial, home, or current directories. The GPATHS subroutine provides this
function. This subroutine is also capable of determining the full pathname of a
file open on any file unit, including the command output unit. File numbers for
member files within segment directories are returned when appropriate.
To determine the full pathname of one of the three directories, your program
calls GPATHS and provides it with

• A key that specifies which directory pathname is to be obtained
• The size of the buffer into which the pathname is to be stored

The GPATHS subroutine determines the appropriate directory pathname and
returns to your program

• A buffer containing the resulting pathname
• The actual length of the pathname
• An error code indicating whether the operation was successful

Figure 6-8 illustrates the calling sequence for the GPATHS subroutine to
determine the pathname of one of the three attach points.

6-20 Third Edition

Attach Points

Determine Pathname of an Attach Point

Maximum Length of name
(returned pathname in

characters)

0 (zero)

f K$CURA 1
\ K$H0MA \
[K$INIA J

HALF HALF
I N T I N T

HALF
. INT

GPATHS (key, ignored, name, max_name_len, namejen, code)

\ ♦ ♦
STRING

Returned
Pathname

^_ HALF HALFE M T I N T

Standard
Error
Code

Length of
Returned Pathname

(characters)

Qp6D&£>l00563LA

Figure 6-8. Calling Sequence of GPATH$ to Determine the Pathname of an
Attach Point

Third Edition 6-21

Advanced Programmer's Guide II: File System

The Key: Your program sets the key argument to one of three values:

K e y w o r d V a l u e M e a n i n g

K$CURA 2 Determine the pathname of the current directory.

K$HOMA 3 Determine the pathname of the home directory.

K$INIA 4 Determine the pathname of the initial directory.

Maximum Size of the Returned Pathname: Your program sets the
max jiame Jen argument to the size of the name argument in bytes. If the
resulting pathname is longer than maxnamelen characters, the operation fails,
and an error code of E$BFTS is returned.
The Returned Pathname: The GPATHS subroutine sets the name argument
to the resulting pathname if the operation succeeds (code is 0). GPATHS stores
the operational length of the returned pathname in name Jen. No characters
beyond character number name Jen in name contain valid data.
The Actual Length of the Returned Pathname: GPATHS sets the
name Jen argument to the length of the resulting pathname in bytes if the
operation succeeds (code is 0).
The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to GPATHS to
determine the pathname of an attach point, code may have one of many values.
The Advanced Programmer's Guide: Appendices and Master Index contains a
comprehensive list of all standard file system error codes. Error codes specific to
this operation are

K e y w o r d V a l u e M e a n i n g
E$NATT 7 No top-level directory attached. This error usually occurs

only when the directory to which the user is attached is
removed from the system, as when a disk is shut down.
Use one of the subroutines described in this chapter to
reestablish a current attach point.

E$BFTS 35 Buffer too small. The supplied buffer is too small to hold
the information. The buffer argument contains no useful
data.

E$PTHU 357 Pathname unavailable. In certain cases it is possible that
GPATHS may not return the desired pathname. For exam
ple, if GPATHS encounters a remote portal reference to
another directory, and that reference has not been propa
gated to the GMT, the Path Unavailable error is
returned.

6-22 Third Edition

Attach Points

Example: The following PL/I statements display the full pathname of the
home directory:

ca l l gpath$(k$homa,0,pathname,80,path len,code) ;
if code=0 then call tnou(pathname,pathlen);

else call errpr$(k$irtn,code,'Cannot get home pathname',24,
'MYPROGRAM',9);

The SRCHSS Subroutine
Use the SRCHSS subroutine to open the current directory. When calling
SRCHSS, your program provides

• An indicator that the current directory is being opened
• A key that specifies how the directory is to be opened

The SRCHSS subroutine attempts to open the current directory and returns to
your program

• An error code indicating whether the operation was successful
• A file unit number that identifies the open directory. This number is used

when reading directory entries.
• The file type, indicating the type of file just opened (currently always

top-level directory)

This section describes the input and output parameters that apply when calling
SRCHSS, and then shows a sample call to SRCHSS. Figure 6-9 illustrates the
calling sequence of the SRCHSS subroutine to open the current directory.

Third Edition 6-23

Advanced Programmer's Guide II: File System

Open Current Directory

K$CURR

0 (zero)

K$READ+K$GETU

HALF HALF HALF
I N T I N T I N T

\ \ \
SRCH$$ (key, current, ignored, unit, type, code)

I \ \
HALF HALF HALF
INT INT INT

File Unit
Number

Standard
Error
Code

Type of Current Directory

Q06j09£>100563LA

Figure 6-9. Calling Sequence of SRCH$$ to Open the Current Directory

6-24 Third Edition

Attach Points

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to SRCHSS to open
the current directory, code may have one of many values. The Advanced
Programmer's Guide: Appendices and Master Index contains a comprehensive
list of all standard file system error codes. Error codes specific to this operation
are:

E r r o r C o d e V a l u e M e a n i n g

E$NATT 7 No directory attached. This error usually occurs only
when the directory to which the user is attached is re
moved from the system, as when a disk is shut down. Use
one of the subroutines described in this chapter to reestab
lish a current attach point.

ESNRIT 10 Insufficient access rights. You do not have List access to
the current directory.

ESMTPT Directory is a mount point. You cannot reference a direc
tory that is the mount point of another directory, so that
tape backup procedures do not cross mount points. This
error is returned by the ref key KSNMNT.

Example: The following example shows how a FORTRAN program opens
the current directory for reading:

CALL SRCH$$(K$READ+K$GETU,K$CURR,0,UNIT, TYPE,CODE)
IF (CODE.NE.0) GO TO 1000

1000 CALL ERRPR$(K$IRTN,CODE,'Current directory',15,'MYPROGRAM',9)
RETURN

Questions and Answers About Attach Points
This section answers some typical questions about attach points.

• If the current attach point gets reset by a mistyped command, or by the
execution of a non-internal command, how does this affect my running
program?

If a user quits (by typing CONTROL-P) while running a program, resets the
current attach point by mistyping a command or executing a non-internal
command, and then restarts the program (by using the START command), the

Third Edition 6-25

Advanced Programmer's Guide II: File System

program may not continue working properly; its behavior when it resumes
execution may be unpredictable, because it is suddenly performing file system
operations in a different directory than intended. This is the case only if the user
happened to quit while the program was using the current attach point separately
from the home attach point.
Attach points are not a part of the recursive command environment. You must
consider this when you write programs that tend to disassociate the home and
current attach points while allowing the user to quit.
Even a call to SRSFXS or CPS can involve the specific use of the current attach
point. (For example, calling CPS to invoke DELETE causes an attach to
CMDNCO to search for the DELETE program.) Because these subroutines are
also interruptible, they may not continue execution properly if the current attach
point is reset during an interruption, and improper execution of these subroutines
may affect the operation of your program.

• Can I use the GPATHS subroutine to record my current attach point during
a quit, and then when the user types START, call AT$ with the pathname
returned by GPATHS to preserve my attach point?

Yes, with the following caveat: the pathname returned by GPATHS contains no
passwords. If your system is using password directories, it is possible that the
mechanism proposed by this question might complicate matters, but if your
system uses ACL directories throughout, then the proposed solution should
work.
There are two points to consider:

• Make certain that the mechanism not only catches the original
CONTROL-P, but also catches the subsequent START command. The
recommended way to do this is to resignal the QUITS condition from
within the handler for QUITS. Subroutines Reference II: File System
describes the condition signalling mechanism.

• The access to the specified directory is recalculated whenever the
mechanism is engaged. This is rarely a problem, but it is possible that the
attempt to reattach to the current directory could fail due to insufficient
access, whereas the original attach to the current directory succeeded, if a
change to the access control of that directory is made between the original
attach and the subsequent attach.

6-26 Third Edition

Text Storage and Retrieval

7

Many applications must be able to store and retrieve text strings on disk. Under
PRIMOS, text strings consist of 8-bit characters in ASCII format. Each text
string is considered to be a line of text. A text file consists of one or more lines
of text. This chapter describes how programs create and operate on text files.
Using PRIMOS, text storage and retrieval is straightforward. PRIMOS offers
two methods of organizing lines of text on disk:

• Variable-length records
• Fixed-length records

Each method of organization has advantages and disadvantages, described later
in this chapter. PRIMOS provides a unified interface to both types of files. In
particular, the opening and closing of variable-length record and fixed-length
record files is identical. The only difference is in the way data are actually read
and written to the file.
This chapter describes

• The differences between variable-length record files and fixed-length
record files

• How to open, extend, truncate, and close text files
• How to read and write variable-length files
• How to read, write, and position fixed-length record files
• The format of a variable-length record file
• The format of a fixed-length record file

This chapter closes with questions and answers about text files.

Subroutines for Accessing Files

The subroutines most often used when accessing text files are:

Third Edition 7-1

Advanced Programmer's Guide II: File System

SRCHSS Accepts a filename; opens, closes, deletes, changes access on, or
verifies the existence of the file as requested by the key. Most
commonly used to open and close files.

SRSFXS Allows the calling program to specify a list of legal file suffixes
in order to find a file with one of them. Each supplied suffix is
appended to the base pathname, until the file is found or the list
of suffixes is exhausted. This subroutine is used by Prime
software such as the RESUME command.

SGDSOP Opens a file within a segment directory. The segment directory
must already be open.

RDLINS Reads a line from an open variable-length record file, returning
a fixed-length record buffer. The buffer is appropriately padded
with spaces (240 octal).

WTLINS Writes a fixed-length record to an open variable-length record
file. The length of the line is calculated by subtracting the
number of trailing spaces (240 octal) from the length of the
record.

PRWFSS Used to truncate a file after writing it, in case the file is to be
made shorter. For fixed-length record files, PRWFSS is also
used to read, write, and position the file, as described later.

All of these subroutines are thoroughly described in Subroutines Reference II:
File System.

Difference Between Variable-length and Fixed-length Record Files

The organization of data within a file is defined by the program or programs that
use the file. PRIMOS does not maintain a description of the contents of any file.
This allows flexibility in accessing files, because one program can treat a file as
a collection of lines of text, while another program can treat the same file as
binary data.
All programs that use a file must agree on the organization of data within the
file, because PRIMOS does not impose restrictions on the access method. This
means that all programs must know whether a text file consists of
variable-length records or fixed-length records when operating on text files.
Therefore, you should decide early in any project whether to use variable-length
records or fixed-length records. This prevents confusion and program
misbehavior. If such a decision cannot be made early enough, you should build a
small subroutine library that can perform fixed-length operations on
variable-length record files, and vice versa. You rarely need such a subroutine

7-2 Third Edition

Text Storage and Retrieval

library, however, because the advantages and disadvantages of the two
organizations are so distinct.

Variable-length Records
Text files under PRIMOS normally consist of variable-length records. Each line
of text in a file is terminated by a new-line character, ASCII LF (212 octal). The
lengths of lines in the file vary from 0 to an application-defined maximum. No
prefix defining the record length is present; the new-line character delimits each
record.
Variable-length records offer the following advantages:

• All utilities supplied by Prime that operate on text files accept
variable-length records. Such utilities include SLIST, ED, EMACS,
RUNOFF, SPOOL, and others. Only a few utilities, such as SORT, support
fixed-length records.
Using variable-length records usually saves disk space. This is true when
the lengths of lines in a file vary, or when three or more contiguous spaces
(a space is 240 octal) occur frequently in the file.
There is no inherent limit to the length of a line in a variable-record file.
Each particular application limits the operational length of lines in a text
file to a specific quantity. This is also true of utilities supplied by Prime.
The maximum line length in ED is different from that of EMACS, for
example.
The length of each line in a variable-record file is defined by a new-line
character that follows it. Thus, a utility needs no information outside the
file to use the file. On the other hand, any program that operates on a
fixed-length record file must know the record size of the file.

Variable-length record files are sometimes referred to as compressed files. The
term "compressed" refers to the compression of contiguous spaces. Another
term, uncompressed, identifies a similar file format that does not include space
compression. PRIMOS itself cannot distinguish between compressed and
uncompressed files; your application must make this distinction.

•

•

Fixed-length Records
The alternate organization of text files under PRIMOS stores lines of text in
fixed-length records. Here, the length of each record, or line of text, is known
by the program using the file. Records are stored side-by-side in the file, with
no intervening control information (such as a new-line character).
Fixed-length records offer the following advantages:

Third Edition 7-3

Advanced Programmer's Guide II: File System

• Accessing a particular record is significantly faster when all of the records
are fixed-length, since the location of the record is defined by only two
variables — the record length for the file and the record number to be
accessed. A variable-length record file must be searched sequentially until
the desired record is found.

• There are no restrictions on the character set. Characters such as the ASCII
line feed (212 octal), DC1 (221 octal), and null (000 octal)can be read and
written without any special consideration.

•

•

The execution speed of a program that expects records to contain
fixed-length fields of information may be superior when fixed-length
records are used. Fixed-length records can be read directly into PL/I
structures or FORTRAN EQUIVALENCE areas without going through an
intermediate parsing stage (as is necessary when reading variable-length
records).
Programs that use fixed-length record data can often be more easily moved
from one large-scale computer system to another. Fixed-length record
organization has been in use for approximately a century, beginning with
the punched card. Variable-length record organization is comparatively
recent, and is still the second choice in languages such as COBOL,
FORTRAN, and PL/I.

Hybrid Approaches
As described previously, PRIMOS itself places no restrictions on the
organization of data in a file. It is up to the programs that access the file to use
the same access method on a file. Therefore, it is possible to construct hybrid
file organizations that include advantages from both the fixed-length and
variable-length record approaches.
For example, if you use fixed-length records separated by an ASCII LF (212
octal) and a NUL (000 octal) byte, you can display a fixed-length record file
using SLIST. (It cannot be edited by using ED or EMACS, however.)
To solve the problem of having to hard-code the record length into programs
that use fixed-length records, the first two bytes of a file can be defined to
contain the length of records in the file in bytes. However, this prevents the file
from being directly sorted by Prime's SORT facility — when sorting
fixed-length record files, SORT does not expect the first two bytes to contain
such information.
You may decide to have a variable-length record file to save disk space, using
the PL/I language as a model. You can represent the individual records as PL/I
CHARACTER(*) VARYING variables, rather than ending each record with a
new-line code. This has two disadvantages. First, it renders such files
inaccessible via PRIMOS utilities such as SLIST, ED, and EMACS. Second,
records would presumably not be written using space compression techniques,

7-4 Third Edition

Text Storage and Retrieval

and therefore one might take up extra disk space. The important advantage of
this approach is that of fixed-length records; the entire character set may be used
within each record.

Although you can use approaches such as those described above instead of the
variable-length and fixed-length record organizations, such approaches are not
described in this book. If you find that you need a nonstandard organization for
a text file, you must treat the file as a data file. The manipulation of data files is
described in Chapter 8, Data Storage and Retrieval.

Maximum Length of a File

Currently, the maximum number of characters that can be stored in one file
under PRIMOS is 465 million. This assumes a single file stored on a 30-head
partition residing on a 675MB disk drive (also known as a 600MB disk), with
the minimal housekeeping and directory information in the partition.

How to Open, Extend, Truncate, and Close Text Files

To read a text file, your program normally

1. Opens the file for reading.
2. Reads the file until the end of file is reached.
3. Closes the file.

To write a text file, your program normally

1. Opens the file for writing.
2. Positions the file to end-of-file if new data is to be written to the end of the

file; otherwise, your program overwrites the existing data.
3. Writes the file, automatically extending the file length when necessary.
4. Truncates the file at the current position to insure that old data originally in

the (longer) file is deleted.
5. Closes the file.

PRIMOS docs not impose restrictions on the order of these operations except
that your program must open a file before it can read, write, extend, or truncate
the opened file.
The subjects of this section are how to open, position to the end of, truncate, and
close a text file. The subsequent two sections describe how to actually read and
write text files.

Third Edition 7-5

Advanced Programmer's Guide II: File System

Opening a File
Before your program can access data in a file, it must open the file. Your
program opens a file by using the SRSFXS, SGDSOP, or SRCHSS subroutines.
When your program calls these subroutines, it provides

• The name of the file to be opened.
• A key that specifies how the file is to be opened.

The SRSFXS, SGDSOP, or SRCHSS subroutine attempts to open the specified
file and returns the following information to your program:

• An error code indicating whether the operation was successful.
• A file unit number that identifies the open file. Your program uses this

number when performing operations (such as read and write) on an open
file.

• The file type, indicating the type of file just opened (including SAM,
DAM, CAM, SEGSAM, SEGDAM, and Directory).

This section contains the input and output parameters applicable when you call
SRSFXS, SGDSOP, and SRCHSS, and shows a sample call to SRCHSS. Figure
7-1 illustrates the calling sequence of SRSFXS to open a file; Figure 7-2
illustrates the calling sequence of SGDSOP; Figure 7-3 illustrates the calling
sequence of SRCHSS to open a file.
The Name Of the File: The rules for the filename depend on the system
subroutine being called.
Your program may supply a pathname if it is using SRSFXS. The pathname may
identify segment directory members (such as FRED>XYZ.SEG>0).
For SGDSOP, your program must first position the segment directory to the
desired entry by using SGDRSS; then, your program calls SGDSOP, providing
the file unit number of the open segment directory.
When calling SRCHSS, the filename must be an objectname; that is, it cannot
contain a > symbol. SRCHSS searches the current directory for the specified file
system object.
The Key: In the case of SRSFXS and SRCHSS, your program sets key as
follows:

key = action + newfile + k$getu

For SGDSOP, your program sets key as follows:

key = action

7-6 Third Edition

Text Storage and Retrieval

Open a File, With Possible Suffix

Pathname of
Object to Open

K$READ
K$WRIT
K$RDWR

+ k$nsam!
K$NDAM J

+ KSGETU

Number of Suffixes
in suffixes Array

(0 means no suffix processing)

Array ofDesired
Suffixes

HALF
INT

<=128
STRING

HALF
INT

<=32
STRING
ARRAY

♦ I
SRSFXS (key, name, unit, type, num_suffixes, suffixes, basename, suffix_used, code)
♦

HALF
INT

[ARRAY(2)] - FTN/
PMA
only*

HALF HALF
INT INT

File
Type

♦ t
<=32

STRING
HALF
INT

File Unit
Number

r
(1): Termination Character Position
(2): Length of Pathname!. ftn/PMA only*

(characters) J

HALF
INT

Standard
Error
Code

Index Into suffixes
of Suffix Used (matched)

(0 means null suffix)

Final Component of name
Without Suffix Used

(useful when appending another suffix)

Side Effects: May reset current attach point.
* Function value is returned in L-register; typically, you need only to declare as HALF INT, because

first datum is all you need and is in A-register. Otherwise, you must declare it as FULL INT to
make it work.

QO7j01VJOO56JLA

Figure 7-1. Calling Sequence of SRSFX$ to Open a File

Third Edition 7-7

Advanced Programmer's Guide II: File System

Open Member of Segment Directory

-10000
(find available unit number)

(use this unit number)

Unit Number
of Segment

Directory Type of NewlyCreated File

K$READ
KSWRIT
K$RDWR
K$VMR

1

KSNSAM
KSNDAM
KSNSGS
KSNSGD
KSNCAM

1
\

HALF
EMT

w i f

HALF HALF
I N T I N T

HALF
INT

I ♦ ♦ \
SGD$OP (key, seg-unit, file-unit, type, new-type, code)

♦ \ \
HA
IN

LF
rr

HALF
IT

HA
DS

LF
IT

<

Unit N
Member C

umber
ipened On

Type of Fi
Value

0
1
2 <
3 [
7

e Opened
Type

SAM File
DAM File

SAM Segdir
DAM Segdir
CAM File

Stan
Er
Co

da
ror
de

Side Effects: If seg-unit is at end of segment directory and key is KSWRIT or K$RDWR,
SGDSOP attempts to automatically extend segment directory by one entry, which
also repositions seg-unit to new end-of-segdir position; otherwise, size of segment
directory and position of seg-unit remain unchanged.

Qp7D2J>100S63LA

Figure 7-2. Calling Sequence of SGD$OP

7-8 Third Edition

Text Storage and Retrieval

Open File in Current Directory

Name of
Object

K$BKUP
K$READ
K$WRIT
K$RDWR

, f K$NSAM \1~ \ K$NDAM J

+ KSGETU

I

Length of
Object Name
(characters)

HALF 32 . .
INT STRING *« HALF- INT

SRCHSS (key, name, namejen, unit, type, code)
♦ ♦ ♦

HALF HALF HALF
INT INT INT

File
Unit

Number

Standard
Error
Code

Object
Type

Q07.03D100563LA

Figure 7-3. Calling Sequence of SRCH$$ to Open a File

Third Edition 7-9

Advanced Programmer's Guide II: File System

The values and meanings of action and newfile are:

V a l u e M e a n i n g
action Specifies how the file is to be opened. This distinguishes

between a file being open for reading, writing, or both reading
and writing. These states are often identified by the mnemonics
R, W, and RW (or WR), respectively. The keywords used when
opening files are

Keyword Value Meaning

KSREAD Open the file for reading.

KSWRIT Open the file for writing.

KSRDWR Open the file for both reading and writing.

KSBKUP Open for reading by backup facility.

KSVMR 16 Open for VMFA read.

newfile

If your program attempts to write to a file that is open for
reading, an error code of ESUNOP (Unit not open) is returned to
your program. This same error code is returned if your program
attempts to read a file that is open for writing.

Specifies what type of file should be created if the file does not
already exist. (The file is created only if your program is
opening the file for writing or for reading and writing.)The
keywords used for text files are

K e y w o r d V a l u e M e a n i n g
KSNSAM 0 Create a new threaded (SAM) file. (This

is the default.)

KSNDAM 1024 Create a new directed (DAM) file.

For SGDSOP, the newfile value is replaced by the new-type
argument in the calling sequence. This argument may also
include:

K e y w o r d V a l u e M e a n i n g
KSNSGS 2048 Create a new SAM Segment Directory.

KSNSGD 3072 Create a new DAM Segment Directory.

KSNCAM 4096 Create a new contiguous (CAM) file.

7-10 Third Edition

Text Storage and Retrieval

K e y w o r d V a l u e M e a n i n g
KSGETU Specifies that PRIMOS is to use an

available file unit, and return the se
lected file unit number in the unit pa
rameter of the calling sequence. For
SGDSOP, your program specifies that
PRIMOS is to use an available file
unit by supplying a unit number of
-10000. If you want your program to
specify the unit number instead of let
ting PRIMOS select the number, your
program supplies a unit number be
tween 1 and 126 (or 1 and 15 for a
program running under PRIMOS II).

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to SRSFXS,
SGDSOP, or SRCHSS to open a file, code may have one of many values. The
Advanced Programmer's Guide: Appendices and Master Index contains a
comprehensive list of all standard file system error codes. Error codes specific to
this operation are:

K e y w o r d V a l u e M e a n i n g
ESFIUS 5 File in use. The file being opened is already open on

another file unit, or by another user. Normally, a file that
is open for reading cannot be opened for writing, nor can
a file open for writing be opened for reading. A file that
is open for writing can have only one file unit open to it,
whereas a file open for reading can have many file units
open to it. If you expect your program to open a file that
may occasionally be in use by another process for a short
period of time, consider having your program repeatedly
attempt to open an in-use file for 30 seconds or a minute,
sleeping one second in between each attempt by calling
SLEEPS.

See Chapter 10, File Attributes, for more information on
the read/write lock.

ESDKFL 9 The disk is full. This error can occur only if a new file is
being created, and hence cannot occur if the action por
tion of the key argument is KSREAD.

ESNRIT 10 Insufficient access rights. If the file being opened
already exists, this means that the user running your pro
gram does not have sufficient access rights to the file. If
the file does not exist, then the user does not have Add
rights to the directory in which the file is to be created.

Third Edition 7-11

Advanced Programmer's Guide II: File System

Keyword Value Meaning
For calls to SRSFXS, this error code may indicate a prob
lem attaching to the directory that was specified by the
pathname argument of the calling sequence. In this case,
the user does not have Use access to at least one directory
in the pathname.

ESFNTF 15 Not found. The file being opened does not exist. The
action portion of the key argument is probably KSREAD;
otherwise, the file would be created.
For calls to SRSFXS, this error code may indicate a prob
lem attaching to the directory that was specified by the
pathname argument of the calling sequence. In this case,
at least one directory in the pathname does not exist.
Even if the action portion of key is KSWRIT or
KSRDWR, no directory is ever created via a call to
SRSFXS. You must use the DIRSCR subroutine to create
a directory.

ESITRE 57 Illegal treename. (SRSFXS only.) This indicates that the
pathname supplied to SRSFXS does not conform to the
syntax rules for a pathname. See the PRIMOS User's
Guide for a description of the syntax of a pathname.

ESMXQB 143 Maximum quota exceeded. This error can occur only if a
new file is being created, and hence cannot occur if the
action portion of the key argument is KSREAD.

E$IACL 150 Entry is an access category. The specified file system
object is an access category. See Chapter 9, Access Con
trol Lists (ACLs), for information on access categories.

ESNINF 159 No information. This indicates that some error occurred,
but the user running your program does not have List
access to the directory involving the error. In such a case,
the ESNINF error code is alwaysreturned to prevent the
user or calling program from getting any information
about the directory. Therefore, this error code indicates
any possible error, in addition to a simple case of insuffi
cient access.

The File Type: The returned file type is valid when the returned error code is
0. It is not valid in any other case.
The file type is one of the following five values:

Value
0

1

Meaning
A SAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it.
A DAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it.

7-12 Third Edition

Text Storage and Retrieval

2 A SAM segment directory (SEGSAM) has been opened. Use
SGDRSS to operate on members of this segment directory. See
Chapter 8, Data Storage and Retrieval, for information on how
to do this.

3 A DAM segment directory (SEGDAM) has been opened. Use
SGDRSS to operate on members of this segment directory. See
Chapter 8, Data Storage and Retrieval, for information on how
to do this.

4 A top-level directory has been opened. Use DIRSSE, DIRSRD,
ENTSRD, and RDENSS to read information on files in this
directory. See Chapter 8, Data Storage and Retrieval, for
information on how to do this.

7 A CAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write iL

Examples: The following example shows how a FORTRAN program would
open the file MYFILE in the current directory for reading:

CALL
SRCH$$(K$READ+K$GETU, 'MYFILE', 6, UNIT,TYPE,CODE)

IF (CODE.NE.0) GO TO 1000

1000 CALL ERRPR$(K$IRTN,CODE,'MYFILE',6,'MYPROGRAM',9)
RETURN

The next example illustrates the use of the newfile value in the key argument of
the calling sequence to SRCHSS. The file ANOTHER_FILE is opened for
reading and writing in the current directory. If it does not exist, it is created as a
DAM (directed) type file. Only the subroutine call itself is shown; the error code
would be examined in the same fashion as shown in the example above.

CALL
SRCH$$(K$RDWR+K$NDAM+K$GETU,'ANOTHER_FILE',12,UNIT,

& TYPE,CODE)

Positioning a File to End-of-file
When your program is writing data to a text file, you may want it to add new
data to the end of the existing file and leave the previously entered data intact.
To position a newly opened file to the end-of-file location, have your program
call a subroutine named POSIT, shown below, with the HALF INT file unit
number of the file, and a HALF INT returned error code. Your program then

Third Edition 7-13

Advanced Programmer's Guide II: File System

checks the returned error code to make certain the operation succeeded. If it did
not, your program closes the opened file, produces an error message, and aborts.
The following FORTRAN statements illustrate the procedure.

CALL SRCH$$ (K$WRIT+K$GETU,'MYFILE',6,UNIT,TYPE,CODE)
IF (CODE.NE.0) GO TO 1000

C
CALL POSIT(UNIT,CODE) /* Position to end of file.
IF (CODE.NE.0) GO TO 1001

C
1000 CALL ERRPR$(K$IRTN,CODE,'MYFILE', 6,'MYPROGRAM',9)

RETURN
C
1001 CALL SRCH$$(K$CLOS,0,0,UNIT,TYPE,I) /* Don't overwrite CODE!

GO TO 1000

The POSIT subroutine mainly uses a form of the PRWFSS subroutine that
positions a file. Figure 7-4 illustrates the calling sequence of the PRWFSS
subroutine to position toward end-of-file.

7-14 Third Edition

Text Storage and Retrieval

Position Toward End-of-file

NULL () in PL/I or
LOC(O) in FORTRAN

File Unit
Number

K$POSN+K$PRER

0 (zero)

HALF HALF pmp HALF
I N T I N T I N T

2147483647
(231-1)

FULL
INT

M i l I
PRWF$$ (key, unit, ignored_1, ignored_2, farjorward, overwritten, code)

\ I
HALF HALF
I N T I N T

Standard
Error
Code

Ignore
Value

QO704D100S63LA

Figure 7-4. Calling Sequence of PRWF$$ to Position Toward End-of-file

Third Edition 7-15

Advanced Programmer's Guide II: File System

The POSIT subroutine might be written as follows:

SUBROUTINE POSIT(UNIT,CODE)
INTEGER*2 UNIT,CODE

C
C This subroutine positions the specified file unit to the
C end-of-file location. It returns the success or failure
C of the operation in the CODE parameter.
C
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C

INTEGER*2 RNW
C
10 CALL PRWF$$(K$POSN+K$PRER, /* Position relative.

& UNIT, /* Pass the file unit number.
& LOC(0), /* This pointer is unused during a
& / * p o s i t i o n - o n l y o p e r a t i o n .
& 0, /* Another unused value in this case.
& 2147483647, /* Largest positive INTEGERM number.
& RNW, /* Unused, but may be overwritten anyway.
& CODE) /* The error code.

C
C CODE should never be 0. If it is, it means the file is
C very large. Loop until we reach the end of the file.
C

IF (CODE.EQ.O) GO TO 10 /* File is very big!
C
C However, if the returned error code is E$EOF (End of file),
C then we succeeded, so set it to 0. In any case, return.
C

IF (CODE.EQ.E$EOF) CODE=0 /* Success.
RETURN
END

Truncating a File
Before closing a file you have written to, it is good practice to have your
program truncate the file. This tells PRIMOS to make the current position of the
file the new end-of-file location.
If your program just created the file, this operation is not necessary. However, if
your program has opened an existing file and overwritten it, your program may
not have written up to the current end-of-file location of the file. If this is the
case, and your program performs no truncation, the file ends up having more
data than was intended, and the chances are good that one record of the old file
data has been partially overwritten by the new data.

7-16 Third Edition

Text Storage and Retrieval

The truncation operation is simple, and is always done by PRWFSS. Figure 7-5
illustrates the calling sequence of the PRWFSS subroutine to truncate a file. A
sample use of PRWFSS follows:

CALL PRWF$$(K$TRNC, /* Truncate the file.
& UNIT, /* The file unit number.
& LOC(O), /* Ignored when truncating.
& 0, /* Ignored when truncating.
& 000000, /* Truncate at the current position.
& RNW, /* Ignored when truncating, but play it safe.
& CODE) /* The error code.

C
IF (CODE.NE.0) CALL ERRPR$(K$IRTN, CODE, /* Not fatal

& 'Cannot truncate file', 20,'MYPROGRAM',9)

Third Edition 7-17

Advanced Programmer's Guide II: File System

Truncate File at Current Position

NULL () in PL/1 or
LOC(O) in FORTRAN

File Unit
Number

K$TRNC

0 (zero)

0 (zero)

HALF HALF pmpINT INT r in
HALF
INT

FULL
INT

♦ ♦ I ♦ ♦
PRWF$$ (key, unit, ignored_1, ignored_2, ignored_3, overwritten, code)

HALF
INT

HALF
INT

Standard
Error
Code

Ignore
Value

Q07.05D100563LA

Figure 7-5. Calling Sequence of PRWF$$ to Truncate a File

7-18 Third Edition

Text Storage and Retrieval

As shown in the example above, most programs do not regard an inability to
truncate a text file as an error, although they do produce an error message. For
example, the PRIMOS editor ED treats an inability to truncate a file as a nonfatal
error. This is because the data have been written, but there exists the possibility
of extraneous data in the file.
The Advanced Programmer's Guide: Appendices and Master Index contains a
comprehensive list of all standard file system error codes. Error codes that may
typically be returned as a result of attempting to truncate a file follow.

V a l u e K e y w o r d M e a n i n g

ESEOF 1 End of file. This can occur only if the call to PRWFSS
inadvertently specifies that the position of the file be
changed. The fifth argument in the call to PRWFSS
should always be an INTEGER*4 zero (000000 in FOR
TRAN, 0L in PMA). If it is not, this error code may be
returned.

ESBOF 2 Beginning of file. This can occur only if the call to
PRWFSS inadvertently specifies that the position of
the file be changed. The fifth argument in the call to
PRWFSS should always be an INTEGERM zero (000000
in FORTRAN, 0L in PMA). If it is not, this error code
may be returned.

ESUNOP 3 Unit not open. The specified file unit is not open, or is
open only for reading.
This usually indicates a program error, although it can
also be the result of the user exiting the program via
CONTROL-P, typing CLOSE ALL, and then typing
START.

ESFIUS 5 File in use. The file being truncated is already open on
another file unit, or being used by another user. This error
code usually indicates that the open file has a read/write
lock setting of UPDT or NONE, because the program has
the file open for writing, and yet at least one other file
unit is open to the file for reading or writing.

Chapter 10, File Attributes, contains information on the
read/write lock.

Closing a File
It is very easy to close a file. The best method is to close the file by unit number.
This means that only the file unit specified in the call to CLOSFU is closed.
Figure 7-6 illustrates the calling sequence of the CLOSFU subroutine.

Third Edition 7-19

Advanced Programmer's Guide II: File System

Close a File Unit Number

File Unit
Number

HALF
INT

CLOSFU (unit, code)

HALF
INT

Standard
Error
Code

QP7JD6D100563LA

Figure 7-6. Calling Sequence of CLO$FU

7-20 Third Edition

Text Storage and Retrieval

A sample use of CLOSFU is

CALL CLO$FU(UNIT,CODE)
IF (CODE.NE.0) CALL ERRPR$(K$IRTN,CODE,'Cannot close',12,

& 'MYPROGRAM',9)

If a nonzero error code is returned, your program should treat it as a fatal error,
because subsequent operations on the file by the same program, other programs,
or the user may fail. In addition, a failure to close may indicate a program error
or a disk error, both of which suggest that the program should not attempt to
continue processing.
Your program may also close a file by name by using the CLOSFN subroutine
by passing the same pathname that was used to open the file. Figure 7-7
illustrates the calling sequence of the CLOSFN subroutine.
When a file is closed by name, all file units opened to the file by the user are
closed. This function is rarely needed, because most programs open a file on
only one file unit at a time. However, interactive users often find this ability
useful, such as when they try to write out an edited command input file, and
receive a File in use message from the editor. At that point, a CLOSE
filename command fixes the problem, no matter what the file unit number for
filename is, as long as no other users have the file open.
Here is a sample use of closing a file by name:

cal l c lo$fn('MYDIR>MYFILE' ,code);
i f code~=0 then cal l errpr$(k$ir tn,code, 'Cannot close' ,12,

'MYPROGRAM',9);

Third Edition 7-21

Advanced Programmer's Guide II: File System

Close One or More File Units by Pathname

Pathname of
Target Object

< = 128
STRING

CLOSFN (name, code)

HALF
EMT

Standard
Error
Code

Side Effects: May reset current attach point. Q07J07DI00563LA

Figure 7-7. Calling Sequence of CLO$FN

7-22 Third Edition

Text Storage and Retrieval

How to Read and Write Variable-length Text Files

Use the RDLINS subroutine to read a variable-length record file (compressed or
uncompressed), and use the WTLINS subroutine to write a variable-length
record file (compressed).

Note In most cases, variable-length record files are compressed. In other words, contiguous
spaces in a line are compressed into a two-byte code to save disk space. Therefore, this
section describes only the reading and writing of compressed files. For information on
the format of compressed variable-length record files, see the section entitled Format of a
Variable-length Record File, later in this chapter.

This section describes

• The RDLINS and WTLINS interfaces

• Sample uses of RDLINS and WTLINS

The RDLINS and WTLINS Interfaces
The subroutine interfaces for RDLINS and WTLINS are identical. Each
subroutine has the following arguments:

• A file unit

• A character buffer

• The length of the buffer (in halfwords)

• An error code

For RDLINS, the input arguments are the file unit and the length of the buffer,
and the output arguments are the character buffer and the error code. For
WTLINS, the input arguments are the file unit, the character buffer, and the
length of the buffer, and the only output argument is the error code. Figure 7-8
illustrates the calling sequence of the RDLINS subroutine; Figure 7-9 illustrates
the calling sequence of the WTLINS subroutine.
File Unit: Each subroutine takes the file unit number as an input argument.
The file unit must be open for reading (RDLINS), writing (WTLINS), or reading
and writing (either subroutine). Further, the file that is open on the file unit must
be a SAM or DAM file; it cannot be a segment directory or file directory.
The reading or writing of the line (or record) begins at the current position in the
file for that file unit. After the line is successfully read or written, the current
position of the file unit immediately follows the line. Therefore, a subsequent
call to RDLINS or WTLINS reads or writes the next line. Your program does

Third Edition 7-23

Advanced Programmer's Guide II: File System

not need to call PRWFSS to position the file to read or write successive lines of
the file.
Input or Output Line: The input or output line is a CHARACTER^)
ALIGNED variable for PL/I programs, a CHARACTER* n variable for
FORTRAN 77 programs (n must be even), or an INTEGER*2 array for
FORTRAN 66 programs.
When your program calls RDLINS, RDLINS places the line read from the file
into input line, assuming a successful invocation of RDLINS has occurred. The
input line is padded with trailing spaces if the actual line is shorter than the size
indicated by max line length. If it is longer than max JineJength, the line is
truncated on the right. When your program calls WTLINS, your program passes
the line that is to be written to the file in output line with trailing spaces up to
the end of output line (as represented by max line length). PL/I automatically
appends the necessary trailing spaces when the variable is set, whereas
FORTRAN programmers must ensure trailing spaces are used to pad the string.
If no trailing spaces are present, the length of the line that is written to the file is
the max line Jength.
Maximum Line Length: Your program passes the length of the input or
output line in halfwords to RDLINS and WTLINS. Therefore, if the input or
output line is a CHARACTER(80) ALIGNED variable, max Jine Jength is
always 40, because one halfword contains two bytes. If the character buffer is an
ENTEGER*2 array dimensioned to 40, then, again, the length of the buffer is 40,
because one INTEGER*2 element is a halfword.
RDLINS and WTLINS never reference the input or output line beyond the
boundary specified by max line length. They both use max Jine Jength as the
maximum possible length of the line, and always consider the current (or
operational) length of the line in characters to be max Jine Jength times two,
minus the number of trailing spaces.

7-24 Third Edition

Text Storage and Retrieval

Read a Line of Text

File Unit
Number

Maximum Length of
inputjine (halfwords)

HALF
INT

HALF
INT

I I
RDLINS (unit, inputjine, maxjinejength, code)

\ / ~ I
STRING HALF

INT

Line Input From File
(blank-padded)

Standard
Error
Code

Q07.0SJD100563U

r
r

Figure 7-8. Calling Sequence for RDLIN$

Third Edition 7-25

Advanced Programmer's Guide II: File System

Write a Line of Text

Line to Be Output to File
(blank-padded)

File Unit
Number Maximum Length of

output-line (halfwords)

HALF
INT STRING ^ HALFDMT

WTLINS (unit, output-line, max-line-length, code)

HALF
INT

Standard
Error
Code

QP7O9D100563LA

Figure 7-9. Calling Sequence for WTLIN$

7-26 Third Edition

Text Storage and Retrieval

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to RDLINS or
WTLINS, code may have one of many values. The Advanced Programmer's
Guide: Appendices and Master Index contains a comprehensive list of all
standard file system error codes. Error codes specific to this operation are:

K e y w o r d V a l u e M e a n i n g
ESEOF 1 End of file (RDLINS only). The end of the file was

reached. The contents of the character buffer are unde
fined. Normally, this means that there is no more data in
the file, but it could mean that there is an incomplete line
at the end of the file, that is, data without a following
new-line character (ASCII 212).

ESUNOP 2 Unit not open. When calling RDLINS, this means the file
unit is open only for writing, or is not open at all. When
calling WTLINS, this means the file unit is open only for
reading, or is not open.

ESBPAR 6 Bad parameter. The length of the buffer as passed by the
calling program is a negative number.

ESDKFL 9 The disk is full (WTLINS only). The line could not be
completely written to the file because the disk was full.
The amount of data successfully written to the file is un
defined, so the only way to recover from this error is to
call PRWFSS to read the file position before calling
WTLINS, and reposition the file after the ESDKFL error
occurs before trying to write the line again or truncating
the file.

ESMXQB 143 Maximum quota exceeded (WTLINS only). The line
could not be completely written to the file because the
quota for the directory was exceeded. The amount of
data successfully written to the file is undefined. The only
way to recover from this error is to call PRWFSS to read
the file position before calling WTLINS. Then, before
trying to write the line again or truncating the file, reposi
tion the file after the ESMXQB error occurs.

Sample Programs Using RDLINS and WTLINS
Here is a sample FORTRAN subroutine that uses WTLINS to write lines to an
open file unit. If a disk-full or quota-exceeded error occurs, the user is given an
opportunity to delete files and restart the program, and the subroutine retries the
write in the correct fashion. This subroutine has the same calling sequence as
WTLINS.

Third Edition 7-27

Advanced Programmer's Guide ll: File System

SUBROUTINE WRITE(UNIT,BUFFER,BUFLEN, CODE)
INTEGER*2 UNIT,BUFFER(1),BUFLEN,CODE

C
C BUFFER can be dimensioned to just 1, even though it is probably
C larger, because this subroutine does not reference its contents;
C it simply passes the buffer on to WTLIN$.
C
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C

INTEGER*2 RNW,PATHNM(40),PATHLN,CODE2
INTEGERM POSITN /* A fullword variable.

C
C First use PRWF$$ to determine our current position in the file.
C

CALL PRWF$$(K$RPOS, /* Special "read-position" function.
& UNIT, /* The file unit.
& LOC(O), /* Unused during a read-position.
& 0, /* Also unused during a read-position.
& POSITN, /* Report position in POSITN.
& RNW, /* Unused, but always play it safe.
& CODE) /* The error code.

IF (CODE.NE.0) RETURN /* Failure.
C
C Now that we know the position of the file before the attempt to
C write the line, we attempt to write the line.
C
1 CALL WTLIN$(UNIT,BUFFER,BUFLEN,CODE) /* Simple enough.
C
C Examine the return code. If disk-full or quota-exceeded, do
C special processing. Otherwise, return.
C

IF (CODE.NE.E$DKFL.AND.CODE.NE.E$MXQB) RETURN
C
C A disk-full or maximum-quota error has occurred. We want to tell
C the user to clean up the directory and type START. First, output
C the error message, along with the full pathname of the file being
C written (so the user knows where to delete files!).
C

CALL GPATH$(K$UNIT,UNIT,PATHNM, 80,PATHLN,CODE2) /* Get the
& /* full pathname of the file open on the file unit.

IF (CODE2.EQ.0) GO TO 10 /* Error?

C
C If we can't get the treename, ignore the error, but make the
C error message useful.
C

CALL ERRPR$(K$IRTN,CODE,'Unknown file name',17,

7-28 Third Edition

Text Storage and Retrieval

& 'WRITE', 5)
GO TO 20

C
C Otherwise, produce an error message showing the treename.
C
10 CALL ERRPR$(K$IRTN,CODE, PATHNM, PATHLN,'WRITE',5)
C
C Now explain to the user what must be done.
C
20 CALL TNOU(0,0) /* Blank line.

CALL TNOUA('Free up some space using DELETE, then type ',
& 4 3)

CALL TNOU('START to continue.',19)
CALL TNOU(0,0)

C
C Now invoke a new command level, and hope we return.
C

CALL COMLV$
C
C User has typed START, repositioned, and retried the write.
C

CALL PRWF$$(K$POSN+K$PREA, /* Position absolute.
& UNIT, /* Hopefully this is sti l l open!
St LOC(0), /* Unused during a position.
& 0, /* Also unused.
& POSITN, /* Specify the desired position.
& RNW, /* Unused, but play it safe.
& CODE) /* The error code.

C
C If it works, retry, else return to the caller.
C

IF (CODE.EQ.O) GO TO 1
RETURN

C
END

The following is a sample use of RDLINS. This PL/I subroutine serves as an
interlude for RDLINS. It returns a CHARACTER(80) VARYING string
containing the input line.

read: proc(unit,line,code); /* Similar to RDLIN$, but no buffer
length, and LINE is a varying
character string. */

del unit fixed bin(15), /* The file unit (input). */
line char(80) var, /* The line read (output). */
code fixed bin(15), /* The error code (output). */
buff char(80); /* This is what is passed to RDLIN$. */

Third Edition 7-29

Advanced Programmer's Guide ll: File System

cal l rd l in$(un i t ,bu ff ,40 ,code) ; / * 40 ha l fwords =
8 0 c h a r s . * /
if code=0 then line=trim(buff,' 01'b) ; /* Store line without

t ra i l ing spaces. * /
else line=''; /* If error, do clean up the line. */

end; /* read: proc */

How To Read, Write, and Position Fixed-length Files

You use the PRWFSS subroutine to read, write, and position fixed-length record
files. This section

• Describes the PRWFSS interface
• Shows some sample uses of PRWFSS

The PRWFSS Interface

PRWFSS is a multipurpose subroutine; its interface is complex. This section
describes the primary functions of PRWFSS for manipulating files containing
fixed-size records of data.
The following table shows which figures illustrate the calling sequence of
PRWFSS for each PRWFSS function described in this section:
F igure Funct ion
7-10 Reading a File
7-11 Writing a File
7-12 Positioning a File
7-13 Reading the Position of a File
7-5 Truncating a File
This section describes the arguments common to reading, writing, positioning,
truncating, and reading the position of a file.

7-30 Third Edition

Text Storage and Retrieval

Read a File

Pointer to
Data Buffer

File Unit
Number

KSREAD

Number of Halfwords
to Read (unsigned)

0 (zero) to Read
at Current Position

HALF HALF pmp HALF
INT INT ^1K INT

FULL
INT

I I I I I
PRWF$$ (key, unit, addr (buffer), size, rel-posn, halfwords-read, code)

HALF
INT

ARRAY
..♦-HALF HALFINT INT

Buffer to Which
Data Are Transferred

Standard
Error
Code

Number of
Halfwords

Actually Read

Side Effects: Contents of buffer elements halfwords-read + 1 through size are undefined after the
operation if fewer halfwords than requested were read.

Q07.IOD100563LA

Figure 7-10. Calling Sequence of PRWF$$ to Read a File

Third Edition 7-31

Advanced Programmer's Guide II: File System

Write a File

Pointer to
Data Buffer

File Unit
Number

KSWRIT

HALF
INT

HALF
INT

Buffer From Which
Data Are Transferred

Number of Halfwords
to Write (unsigned)

HALF
INT

ARRAY

PTR ^HALF
TNT

0 (zero) to Write
at Current Position

FULL
INT

M i l l I
PRWFSS (key, unit, addr (buffer), size, rel-posn, half words-written, code)

I 1
HALF
INT

HALF
INT

Standard
Error
Code

Number of
Halfwords

Actually Written
Q07.11J3100563LA

Figure 7-11. Calling Sequence of PRWF$$ to Write a File

7-32 Third Edition

Text Storage and Retrieval

Position a File

NULL () in PM or
LOC(O) in FORTRAN

File Unit
Number

K$POSN+K$PREA

0 (zero)

HALF HALF
INT INT PTR

Desired File
Position

HALF
INT

FULL
INT

{ { I I I
PRWF$$ (key, unit, ignored-1, ignored-2, position, overwritten, code)

{ {
HALF
INT

HALF
INT

Standard
Error
Code

Ignore
Value

Q07.J2£>100563LA

Figure 7-12. Calling Sequence of PRWF$$ to Position a File

Third Edition 7-33

Advanced Programmer's Guide II: File System

Read the Position of a File

NULL () in PL/1 or
LOC(O) in FORTRAN

File Unit
Number

K$RPOS

I

0 (zero)

H A L F H A L F p ™ H A L F
I N T I N T r i I N T

I I I I
PRWF$$ (key, unit, ignored-1, ignored-2, position, overwritten, code)

i i i
F U L L H A L F H A L F
I N T I N T I N T

Current File
Position

Standard
Error
Code

Ignore
Value

Q37.13D100563LA

Figure 7-13. Calling Sequence of PRWF$$ to Read the Position of a File

7-34 Third Edition

Text Storage and Retrieval

Key: The key argument tells PRWFSS what operation is to be performed:

K e y M e a n i n g
KSREAD Read data from the file starting at the current

position.
KSWRIT Write data to the file starting at the current position.
KSPOSN+KSPREA Position the file to the specified location.
KSTRNC Truncate the file at the current position.
KSRPOS Return the current position of the file.

The above functions represent all of the functions you need to make full use of
PRWFSS for text files. There are more key values you can pass, but aside from
two special functions, these involve performing two or more of the above
operations at one time. Generally, you should avoid the use of such combined
operations, because ambiguity can result if you perform combined operations
and a nonzero error code is returned. For example, if you attempt to
pre-position the file and read data at the same time, it is unclear what has
actually happened if the returned error code is ESEOF.
File Unit: The file unit must be open for reading, writing, or both reading and
writing. Further, the file that is open must be a SAM or DAM file. It cannot be
a segment directory or file directory.
The data are read or written beginning at the current position in the file for that
file unit. After the data are successfully read or written, the current position of
the file unit is changed to immediately follow the data. Therefore, a subsequent
call to PRWFSS reads or writes subsequent data; you do not need to call
PRWFSS to position the file when reading or writing contiguous data in file.
Pointer to a Buffer: You supply a pointer to the buffer as an input argument
to PRWFSS, whereas the buffer itself is used as input or output data by PRWFSS,
or not used at all, depending on the function you are requesting. This argument is
used only during calls to read or write data; in all other cases, LOC(O) or
INTL(O) may be specified in FORTRAN 66 or FORTRAN 77, and NULL () may
be specified in PLA.
When your program performs a read or write operation, the buffer may have any
appropriate declaration as long as it begins and ends on a halfword boundary and
resides within a single segment. Unless you explicitly instruct them to do so,
Prime linkers do not put appropriately declared buffers into memory in such a
way that the buffers cross segment boundaries.
For example, a FORTRAN programmer may choose to use an INTEGER*2
array as the buffer. A PL/I programmer might find using a structure useful.
Because PRWFSS is the raw data mover for the PRIMOS file system, the data
may be of any size and shape.

Third Edition 7-35

Advanced Programmer's Guide II: File System

However, your program must also supply the length of the buffer in halfwords in
the next argument.
Length of the Buffer: The length of the buffer is an unsigned number that
represents the number of halfwords in the buffer. If it is 0, then no data is
transferred to or from the buffer by PRWFSS.

Note The maximum value of the size argument is 65,535 because it is an unsigned HALF INT
argument. If you wish to read or write an entire segment, you cannot do so in one
PRWFSS operation, because 65,536 halfwords are in an entire segment. Instead, use two
separate calls to PRWFSS, specifying a size of 32,768 in each call.

File Positioning Information: Your program uses a FULL INT argument to
communicate with the PRWFSS subroutine concerning the file position. Its use
depends on the function being performed.
When reading or writing data, this argument's value should always be 0 in PL/I,
and 000000 or INTL(O) in FORTRAN. If it is nonzero, PRWFSS first positions
the file forward or backward relative to the current position based on the value of
this argument (positive or negative). It is recommended that you avoid this
functionality, as it is intended only for applications that perform many
positioning operations.
When positioning the file, the value of this argument should be the desired
position in the file. File position is measured in halfwords. The first halfword of
the file is position 0, the second is position 1, the third is position 2, and so on.
Number of Halfwords Actually Read or Written: PRWFSS returns the
number of halfwords actually read or written during a read or write operation to
your program. The value of this argument is not modified for other PRWFSS
operations, but it is recommended that a variable always be passed.
Normally, a read or write operation completes successfully, in which case
PRWFSS sets this argument to the same value supplied as the length of the
buffer. However, if an error such as END-OF-FILE or DISK-FULL occurs, the
number of halfwords actually transferred may range from 0 to the length of the
buffer. Therefore, unless the returned error code is 0, this value should always
be checked to see how many halfwords were actually transferred.
The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to PRWFSS to read
or write data, code may have one of many values. Advanced Programer's
Guide: Appendixes and Master Index contains a comprehensive list of all
standard file system error codes. Codes specific to this operation follow.

7-36 Third Edition

Text Storage and Retrieval

Keyword Value
ESEOF 1

ESBOF 2

ESUNOP 3

ESDKFL 9

Meaning
End of file. The end of the file was reached. If no data
were to be transferred, this error code indicates that an
attempt was made to position the file past the end-of-file
position. The file is positioned at end-of-file when this
error occurs.

If data were to be read from a file, this error code indi
cates that the end of the file was reached during the pro
cess. However, some data may or may not have actually
been read into the buffer. The number of halfwords ac
tually read is returned in the argument described above.
This value ranges from 0 to one less than the length of the
buffer when the ESEOF error code is returned. The con
tents of the buffer following the last halfword transferred
(as indicated by the number of halfwords actually read)
are undefined.

Unless the file is being simultaneously written by another
process or on another file unit, any further attempts to
read the file without first repositioning it result in ESEOF
being returned with the number of halfwords transferred
set to 0.

If data were to be written to the file, this error code indi
cates that an attempt to position the file failed. This
means that the value of the file position (a doubleword
value) was not 0.

Beginning of file. The beginning of the file was reached.
This should occur only if an attempt is made to position
the file backward, using relative positioning keys. If the
key value is one of the values described above, then this
error means that the value of the file position is negative
instead of 0 as it should be.

Unit not open. If the key specified a read operation, then
the file unit is open only for writing or is not open at all.
If the key specified a write operation, then the file unit is
open only for reading or is not open at all. If any other
operation was specified, then the file unit is not open.
The disk is full. This occurs only during a write opera
tion. The buffer could not be completely written to disk
because the disk was full, so anywhere from 0 halfwords
to one less than the length of the buffer halfwords were
written.

After the data are written by PRWFSS, the file is auto
matically returned to its pre-write position. Therefore,
your program can easily retry the operation by simply
calling PRWFSS in the same manner after freeing up disk
space in some fashion.

Third Edition 7-37

Advanced Programmer's Guide II: File System

Keyword Value Meaning

ESMXQB 143 Maximum quota exceeded. This occurs only during a
write operation. The buffer could not be completely writ
ten to disk because the quota on the directory was exceed
ed; therefore, anywhere from 0 halfwords to one half-
word less than the length of the buffer were written.

After the data are written by PRWFSS, the file is auto
matically returned to its pre-write position. Therefore,
your program can easily retry the operation by simply
calling PRWFSS in the same manner after freeing up
some directory space or increasing the directory's quota.

Sample Uses of PRWFSS
Here is a sample FORTRAN subroutine that uses PRWFSS to write records to an
open file unit. If a DISK-FULL or QUOTA-EXCEEDED error occurs, the user
is given an opportunity to delete files and restart the program, and the subroutine
retries the write in the correct fashion. This subroutine has the same calling
sequence as PRWFSS.

SUBROUTINE PRWF(KEY,UNIT, LOCBUF, BUFLEN, POSN,RNW,CODE)
INTEGER*2 KEY,UNIT,BUFLEN,RNW,CODE

INTEGER*4 LOCBUF,POSN
C
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C

INTEGER*2 RNW,PATHNM(40),PATHLN,CODE2
C
1 CALL PRWF$$(KEY,UNIT,LOCBUF, BUFLEN, POSN,RNW,CODE)
2 IF (CODE.NE.E$DKFL.AND.CODE.NE.E$MXQB) RETURN
C
C Disk-full or quota-exceeded. Tell the user to clean up the
C directory and type START. First, output the error message,
C along with the full pathname of the file being written (so
C the user knows where to delete files!).
C

CALL GPATH$(K$UNIT,UNIT,PATHNM, 80,PATHLN,CODE2) /* Get the
& /* full pathname of the file open on the file unit.

IF (CODE2.EQ.0) GO TO 10 /* Error?
C
C If we can't get the treename, ignore the error, but make the
C error message useful.
C

CALL ERRPR$(K$IRTN,CODE,'Unknown file name',17,
& 'PRWF' ,4)

7-38 Third Edition

Text Storage and Retrieval

GO TO 20
C
C Otherwise, produce an error message showing the treename.
C
10 CALL ERRPR$(K$IRTN,CODE,PATHNM, PATHLN, 'PRWF',4)
C
C Now explain to the user what must be done.
C
2 0 CALL TNOU(0,0) /* Blank line.

CALL TNOUA('Free up some space using DELETE, then type ',
& 4 3)

CALL TNOU('START to continue.', 19)
CALL TNOU(0,0)

C
C Now invoke a new command level, and hope we return.
C

CALL COMLV$
C
C User has typed START, so retry the write.
C

IF (AND(KEY,K$POSR).NE.0) GO TO 1 /* Retry exactly as
& / * spec ified i f pos t -pos i t ion ing des i red .

C
CALL PRWF$$(KEY,UNIT,LOCBUF, BUFLEN,000000,RNW,CODE)
GO TO 2 /* Otherwise, retry with no positioning because

& /* the positioning portion of the operation has already
& /* happened.

C
END

The next example shows a subroutine that simulates a RDLINS interface for a
fixed-length record file. The record length is determined by the size of the
RDLINS buffer being passed. The calling program calls this subroutine just as it
would call RDLINS, except that the file is a fixed-length record file, in which
each record has trailing spaces. A similar subroutine could be written that
simulates a WTLINS interface for fixed-length record files.

SUBROUTINE RDLIN(UNIT,BUFFER,BUFLEN,CODE)
INTEGER*2 UNIT,BUFFER(1),BUFLEN,CODE

C
C BUFFER can be dimensioned to just 1, even though it is probably
C larger, because this subroutine does not reference its contents;
C it simply passes the buffer on to WTLIN$.
C
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C

INTEGER*2 RNW,CODE,I,START
C

Third Edition 7-39

Advanced Programmer's Guide II: File System

CALL PRWF$$(K$READ, /* Read a record.
& UNIT, /* The file unit.
& LOC(BUFFER), /* The buffer.
& BUFLEN, /* The length of the buffer.
& 000000, /* No posit ioning.
& RNW, /* The number of halfwords actually read/written.
& CODE) /* The error code.

IF (CODE.EQ.O) RETURN /* Success.
C
C If an error occurred, we must first fill the buffer with spaces,
C starting with the word following the last word successfully
C read.
C
C If the error code was not end-of-file, however, pretend that no
C halfwords were read at all.
C

IF (CODE.NE.E$EOF) RNW=0 /* No words read.
C

IF (RNW.EQ.BUFLEN) GO TO 20 /* Unlikely that the buffer was
& / * c o m p l e t e l y fi l l e d .

C
START=RNW+1 /* Start with the next halfword.
DO 10 I=START,BUFLEN

BUFFER(I)=' '
1 0 C O N T I N U E
C
C Now, if at least one halfword was read, then return an error
C code of zero. This can happen only on an end-of-file error.
C
20 IF (RNW.NE.O) CODE=0

RETURN
C

END

The next sample subroutine shows how to position a fixed-length record file to a
particular record number. This subroutine is called with the file unit to be
positioned, the desired position in terms of a record number, and the record
length (in halfwords) for the file. It returns a standard file system error code.

SUBROUTINE POS(UNIT,RECNO,RECLEN,CODE)
INTEGER*2 UNIT,RECLEN,CODE
INTEGER*4 RECNO

C
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C

INTEGER*2 RNW
C

CALL PRWF$$(K$POSN+K$PREA, /* Position absolute

7-40 Third Edition

Text Storage and Retrieval

& UNIT, /* The file unit .
& LOC(O), /* Unused during a position-only operation
& 0, /* Also unused.
& RECNO*INTL(RECLEN), /* The file position.
& RNW, /* Unused, but play it safe.
& CODE) /* The error code.

RETURN
END

Format of a Variable-length Record File

Variable-length record text files have the following attributes:

• Each line of text can contain from 0 characters to
as many as needed.

• Each line of text begins on a halfword boundary.
• Each character in a line of text occupies one 8-bit byte.
• A new-line character (ASCII line-feed, 212 octal) and optionally

a pad character (000 octal or 240 octal) follows each line of text to
cause each new line to begin on a halfword boundary.

• Space compression is performed by substituting two or more spaces
with an ASCII DC1 character (221 octal) followed by a byte representing
the number of spaces.

• In general, the last line of a file is terminated by a new-line
character and an optional pad character, the same as all other lines
in the file. When an unterminated last line is encountered, the
behavior of Prime and user-written software is undefined. Most
programs ignore all text following the last new-line code. Some
programs, however, treat the end of the file as an implicit new-line
character, and therefore recognize an unterminated last line as if it
were terminated.

For example, suppose that a file named REBEL contains the following lines of
text:

Rebel, Jean-Fery Position: Composer Bom: 1661 Died: 1747
Interests: Swimming, Hiking, Dissonance

When stored using the standard PRIMOS variable-record organization, the disk
copy of this file would be:

Third Edition 7-41

Advanced Programmer's Guide II: File System

Rebel, Jean-Fery DC1 04 P o s i
tion: Compose rDC104B o r n :
16 6 1 DC1 04Died: 1747 LF NUL I n t e
r e s t s : S w i m m i n g , H i k i n
g , D i s s o n a n c e L F

In the above example, DC1 represents the ASCII DC1 code (221 octal), and 04
represents the number of spaces. The new-line character is represented by LF
(212 octal), and NUL indicates a null character (000 octal).
Notice that the final character in the file is a new-line code (LF). It is not
followed by a NUL code because the LF code is in the low-order byte of the
16-bit halfword. A NUL code is inserted when it follows an LF code only if the
LF code is in the high-order byte of a 16-bit halfword in a disk record. Some
programs use the space character (240 octal) as the fill character instead of NUL.

Caution A program that searches forward or backward in a file for particular characters (such as
new-line) must take into account the space compression character DC1 (221 octal). If a
character is preceded by an odd number of DO characters in the file, the character is to
be interpreted as a space count. Another concern is that some programs may generate
multiple consecutive DO and space count characters, which must be treated collectively
as the appropriate number of spaces. Finally, it is possible for some programs to output a
DO followed by a byte containing 0 or 1. These values are to be taken literally, that is,
no spaces (the DO code is a "no-op"), or one space. Do not interpret a space count of 0
as 256 decimal or 65536 decimal (byte-overflow and halfword-overflow values,
respectively).

Format of a Fixed-length Record File

Fixed-length record text files have the following attributes:

• A record length must be defined for the file. This record length should be
expressed in terms of the number of bytes per record. If this record length
is odd, the blocking factor for the file (explained below) must be even, and
the number of records in the file must also be even. However, PRIMOS
utilities that support fixed-length records in files support only even-length
records.

•

•

A blocking factor should be defined for each program that reads or writes
the file. The blocking factor is a number that specifies how many records
are read and written during a single read/write operation.

Each line of text is always r characters in length, where r is the record
length for the file.

7-42 Third Edition

Text Storage and Retrieval

o If a line that is less than r characters long is to be written to the file,
spaces (240 octal) are appended to the line by the user program before
writing the record. This leaves the line left-justified in the record.

o If a line that is more than r characters long is to be written to the file,
the line is truncated to r characters, and the remaining information on
the line is discarded by the user program.

Each line is implicitly terminated by the end of the record, that is, after the
rth character in the record. The last character of record n of a file is
immediately followed by the first character of record n+I. The new-line
character, ASCII LF (212 octal), has no special meaning in fixed-length
record files.
No space compression is performed. The variable-record space
compression character, ASCII DO (221 octal), has no special meaning in
fixed-length record files.
The last record is immediately followed by the end of the file. Therefore,
no data follows the last record of the file. If an attempt is made to read past
the last record in a file, PRIMOS returns an error code.
o It is possible that a partial record (less than r characters long) follows

the last complete record in a file. This often indicates that the file is
corrupted. When such a partial record exists, the data should be
ignored, and an error message should be generated to inform the user
of the program that a possible data file corruption has occurred.

o To ensure that no partial records are inadvertently created, programs
that write a fixed-record length file should always truncate the file
immediately after writing the last record.

PRIMOS does not maintain information on the record length for the file. All
programs that use the file must know the record length. Similarly, PRIMOS
does not maintain any history of blocking factors that were used when the file
was written.
In fact, PRIMOS performs its own record blocking, optimized for the type of
disk being used. A PRIMOS block is referred to as a record by other Prime
documentation, or as a PRIMOS disk or physical record when clarification is
needed. Usually, PRIMOS stores 2048 bytes per record, plus some
housekeeping information. This housekeeping information is used by PRIMOS
to provide optimized record blocking in a fashion that is transparent to user
programs.

Determining the Blocking Factor
The choice of the appropriate blocking factor for your program depends upon the
needs of the program. The only rule imposed by PRIMOS is that the blocking

Third Edition 7-43

Advanced Programmer's Guide II: File System

factor must be even if the record length is odd; PRIMOS allows only reading,
writing, positioning, and truncating of files at halfword boundaries.
Aside from that rule, the determination of a blocking factor is fairly
straightforward. In general, the larger the blocking factor, the fewer read/write
operations needed to peruse a large file. However, a larger blocking factor
increases the amount of time needed to perform most individual read/write
operations, and also requires more program memory to hold the records.
Because PRIMOS provides large amounts of virtual memory, large blocking
factors are preferred.
Although PRIMOS does not require a consistent blocking factor to be used when
reading and writing the file, it is good practice to use the same blocking factor
throughout any given program. Once the file is written, other programs using
different blocking factors can read the same file. However, they must use the
same record length, or the data is misinterpreted.

Calculating Record Position During Random-access
Operations
The position of a record in a fixed-length record file is calculated as follows:

n The record number (starting at record 0)
r The record length in characters

p The position of the record in characters (starting at character 0 in
the file)

If r is odd, p will be odd whenever n is odd. In such a case, the file should be
positioned to record number n-1, and the record copied starting at the
appropriate low-order byte of the halfword in which record n begins.
Assuming pis even, the halfword position of the record is p divided by 2. The
number of halfwords to read in is calculated as follows:

r The record length
b The blocking factor (r * b is even)
h The number of halfwords to read
h (r * b) I 2

7-44 Third Edition

Text Storage and Retrieval

Questions and Answers About Text Files

This section answers some typical questions about text storage and retrieval.

• How can I open only an existing file for writing, or reading and writing;
that is, without creating a new file if it doesn't exist?

There arc several ways to do this. The most straightforward way is to test for the
existence of the file before opening it. This is done by calling the SRSFXS or
SRCHSS subroutines with a key value of KSEXST. For files within segment
directories, use the SGDSEX subroutine.
There is a drawback to this method, however, another user might delete the file
between your call to test for its existence and the call to open the file.
A more reliable way to open an existing file is to first open it for reading. If the
file does not exist, an error code ESFNTF is returned. If the file does exist, it is
opened for reading, preventing any other users from deleting it.
At this point, call the CHSMOD subroutine with the file unit number and a key
argument of KSWRIT or KSRDWR. This changes the state of the file unit from
read to write or read/write. If an error code such as ESFIUS (File in use) is
returned, close the unit and return the error code.
A sample PL/I subroutine that opens a file for writing, without creating the file,
follows.

o p e n _ e x i s t i n g _ fi l e : p r o c (fi l e n a m e) r e t u r n s (fi x e d b i n (1 5)) ;

/* Declarations are not shown except for the input argument
and the returned value. */

del filename char(*) var,
code fixed bin(15);

c a l l s r s f x $ (k $ r e a d + k $ g e t u , fi l e n a m e , u n i t , t y p e , 0 , ' ' , b a s e n a m e ,
suffix_used,code) ;

if codeA=0 then return(code);

cal l ch$mod(k$writ ,unit , code);
i f codeA=0 then cal l clo$fu(unit , ignore_code);

r e t u r n (c o d e) ;
end; /* open_existing_file: proc */

Third Edition 7-45

Advanced Programmer's Guide II: File System

• How do I choose between SRSFXS, SGDSOP, SRCHSS, and others?

If you want to open a file that may or may not have one or more suffixes
appended to its name, use SRSFXS. If you are programming in PL/I or Pascal,
and you want to open a file by using a pathname (such as MYDIR>THISJFILE),
use SRSFXS.
If you want to open a file that is not a pathname, and is in the current directory,
use SRCHSS for maximum performance.
If you want to open a file that is in a segment directory that you have already
opened on another file unit, use SGDSOP.
If you want to close a file by name, use CLOSFN. If you want to close a file by
unit number, use CLOSFU.
If you want to test for the existence of a file within a segment directory, use
SGDSEX. If you want to test for the existence of a file within a file directory,
make the decision as to which subroutine to use (SRSFXS or SRCHSS) as if you
were opening the file, and use the KSEXST key.
If you want to delete a file, use FILSDL if it is a member of a directory, or
SGDSDL if it is a member of a segment directory.
If you want to change the access of an open file unit, always use CH$MOD.
If you want to open a member of an open segment directory, use SGDSOP.

• What is the KSGETU additive key for? What if I don't use it?

Add the KSGETU key to KSREAD, KSWRIT, and KSRDWR when you open
files using the SRSFXS or SRCHSS subroutines. This causes an available file
unit to be selected by PRIMOS and returned in the unit argument of the calling
sequence.
If you do not specify KSGETU when opening a file, PRIMOS treats the unit
argument as an input-only argument, and uses the number in unit as the file unit
number. This is not recommended practice.
Dynamic unit allocation has been preferred since PRIMOS Revision 16, when
the KSGETU functionality was first made available. Only programs that have to
maintain past behavior for compatibility reasons should pass file units to
PRIMOS when opening files. All other programs should use KSGETU or specify
-10000 as the unit number, whichever is needed by the procedure called.
If you decide not to use KSGETU, be aware that there are two additional error
codes that may be returned. The ESUIUS (Unit in use) code is returned if the
file unit you specified is already open. The ESBUNT (Bad unit number) code is
returned if the file unit you specified is not a legal file unit number. However,
the error code ESFUIU (All file units in use) is not returned, because you are not
asking PRIMOS to allocate a new file unit.

7-46 Third Edition

File Organization

Data Storage and Retrieval

Certain applications require the ability to maintain one or more databases on
disk. Prime provides several facilities for building and manipulating databases
from within programs and via interactive sessions. These include MIDASPLUS,
DBMS, DISCOVER, Prime INFORMATION, and PRISAM. Information on
these products can be found in the 50 Series Technical Summary.
In addition, PRIMOS provides several facilities to allow applications to perform
their own database management. These facilities are

• The PRIMOS file system, which allows the hierarchical organization of
files, identified by name or by number.

• The semaphore mechanism, which provides a method of handling
concurrency problems that occur when several users attempt to access the
same database simultaneously.

• The 50 series architecture, which facilitates rapid access by permitting the
sharing of memory-resident data among several users.

This chapter describes the PRIMOS file system as used by database management
software. Volumes II and III of the Subroutines Reference series describe the use
of semaphores and shared memory for database management purposes. In
addition, the 50 Series Technical Summary and the System Architecture
Reference Guide describe semaphores and shared memory in detail.

Two useful file organizations provided by the PRIMOS file system are

• Segment directories, for organizing data files by number
• File directories, for organizing data files by name

This chapter describes how to manipulate segment directories and file directories
under PRIMOS. This is followed by a short discussion on the reading and
writing of data files (whether in segment directories or file directories). This
chapter ends with a question and answer section.

Third Edition 8-1

Advanced Programmer's Guide II: File System

Segment Directories

Your program manipulates files within a segment directory by first opening the
segment directory itself and then positioning the segment directory to the desired
file by using SGDRSS. Your program then calls SGDSOP, SGDSEX, or
SGDSDL with the file unit number of the open segment directory to manipulate
members of the segment directory. When your program is finished with the
segment directory, it closes the segment directory unit by calling CLOSFU.
Once a file within a segment directory is opened, you can treat it as a text file
(described in Chapter 7, Text Storage and Retrieval) or a data file (described
later in this chapter). The remainder of this section describes

• Subroutines used to access segment directories
• How to open a segment directory
• How to position a segment directory
• How to extend a segment directory
• How to open a file within a segment directory
• How to delete a file within a segment directory
• How to scan a segment directory

Subroutines Used to Access Segment Directories
The subroutines most often used when accessing segment directories follow.

Subroutine Use
SRSFXS Accepts a pathname and calls SRCHSS to manipulate the object

according to the specified key. SRSFXS calls SGDRSS to
position to a file.

SGDRSS Positions an open segment directory to a specified member.
Positioning is necessary before calling SRCHSS or SGDSDL to
operate on a member of a segment directory. In addition,
SGDRSS is used to expand and truncate segment directories, and
to read the position of an open segment directory.

SGDSOP Opens a member file of an open segment directory, optionally
creating the member if it does not already exist.

SGDSDL Deletes a member file of an open segment directory.
SGDSEX Tests for the existence of a member file of an open segment

directory.

8-2 Third Edition

Data Storage and Retrieval

How to Open a Segment Directory
Your program must open a segment directory before it can access members of
the segment directory. Use the SRSFXS or SRCHSS subroutine to open the
segment directory. Your program must open the segment directory for reading
and writing if it is going to create or delete members. If your program is going
to open and close only existing members, it need open the segment directory
only for reading. Opening a segment directory only for writing (but not reading)
is not recommended.
When your program calls the SRSFXS or SRCHSS subroutine to open a segment
directory, it provides

• The name of the segment directory to be opened
• A key that specifies how the segment directory is to be opened

The SRSFXS or SRCHSS subroutine attempts to open the specified segment
directory, and returns to your program

• An error code that indicates whether the operation was successful
• A file unit number that identifies the open segment directory. Your

program uses this number when performing operations (such as extend and
truncate) on an open segment directory or when it manipulates members of
a segment directory.

• The file type, indicating the type of segment directory just opened
(including SEGSAM and SEGDAM)

Your program should close a segment directory when finished with it. Do this
with CLOSFU to close the file unit, as described in Chapter 7, Text Storage and
Retrieval.
This section describes the input and output parameters that apply when calling
SRSFXS and SRCHSS, and then shows a sample call to SRCHSS. Figure 8-1
illustrates the calling sequence of SRSFXS to open a segment directory; Figure
8-2 illustrates the calling sequence of SRCHSS to open a segment directory.

Third Edition 8-3

Advanced Programmer's Guide II: File System

Open a Segment Directory, With Possible Suffix

Pathname of
Object to Open

+

/ KSREAD \
]_ KSRDWR J

/ KSNSGS \
\ KSNSGD J

+ KSGETU

Number of Suffixes
in suffixes Array

(0 means no suffix processing)

Array ofDesired
Suffixes

HALF
INT

<=128
STRING

HALF
INT

<=32
STRING
ARRAY

SRSFXS (key, name, unit, type, num_suffixes, suffixes, basename, suffix_used, code)

♦
HALF
INT

[ARRAY(2)] - FTN/
PMA
only*

HALF HALF
INT ENT

File
Type

♦ ♦
<=32

STRING
HALF
INT

[

File Unit
Number

(1): Termination Character Position
(2): Length of Pathname]. FTN/PMA only*

(characters) J

HALF
ENT

Standard
Error
Code

Index Into suffixes
of Suffix Used

(0 means null suffix)

Final Component of name
Without Suffix Used

(useful when appending another suffix)

Side Effects: May reset current attach point.
* Function value is returned in L-register; typically, you need only to declare as HALF INT, because
first datum is all you need and is in A-register. Otherwise, you must declare it as FULL INT to make
it work.

Q08.0ID100563LA

Figure 8-1. Calling Sequence of SRSFX$ to Open a Segment Directory

8-4 Third Edition

Data Storage and Retrieval

Open Segment Directory by Object Name

Name of
Object

/ KSREAD 1
\ KSRDWR J

. f KSNSGS \"^ \ KSNSGD J

+ K$GETU

I

Length of
Object Name
(characters)

HALF 32 ...
INT STRING

HALF- ENT

SRCH$$ (key, name, namejen, unit, type, code)
♦ ♦ I

HALF HALF HALF
ENT ENT INT

File
Unit

Number

Standard
Error
Code

Object
Type

Q08J02D100563LA

Figure 8-2. Calling Sequence of SRCH$$ to Open a Segment Directory

Third Edition 8-5

Advanced Programmer's Guide II: File System

Name of the Segment Directory: The rules for specifying the segment
directory name depend on the system subroutine being called. The filename may
be a pathname if SRSFXS is being used. If SRCHSS is being used, the filename
must be an entryname; that is, it cannot contain a > symbol.

Key: The key argument is calculated as follows:

key = action + newfile [+ KSGETU]

The values and meanings are

V a l u e M e a n i n g
action Specifies whether the segment directory is to be opened for

reading or for both reading and writing. These states are often
identified by the mnemonics R and RW (or WR), respectively.
The keywords used when opening segment directories are

Keyword
KSREAD

KSRDWR

Value Meaning

1 Open the segment directory for
reading.

3 Open the segment directory for
both reading and writing.

When a segment directory is open for reading, and an attempt is
made to create or delete a member of it or to change its size, an
error code of ESUNOP (Unit not open) is returned.

newfile Specifies what type of segment directory should be created if the
segment directory does not already exist. (The segment
directory is created only if it is being opened for writing or for
reading and writing.) The keywords used for segment directories
are

Keyword Value Meaning
KSNSGS 2048 Create a new threaded (SAM)

segment directory.
KSNSGD 3072 Create a new directed (DAM)

segment directory.

SAM and DAM segment directories differ only in performance
and storage efficiency, as described in Chapter 3, Accessing the
PRIMOS File System.

8-6 Third Edition

Data Storage and Retrieval

Note The type of a segment directory (SAM or DAM) is unrelated to the
type of any of its members. For example, a SAM segment directory
may contain DAM files.

KSGETU Specifies that PRIMOS is to use an available file unit, and return
the selected file unit number in the unit parameter of the calling
sequence.

Error Code: An output argument, code, informs your program of the success
or failure of the operation. If code is 0, the operation was entirely successful.
Otherwise, code is always positive. After a call to SRSFXS or SRCHSS to open
a segment directory, code may have one of many values. The Advanced
Programmer's Guide: Appendices and Master Index contains a comprehensive
list of all standard file system error codes. Error codes specific to this operation
follow.

Keyword
ESFIUS

ESNRIT

V a l u e M e a n i n g

5 The segment directory being opened is already open on
another file unit, or by another user. Under normal lock
settings, a segment directory that is open for reading can
have many file units open to it, but a segment directory
open for writing can have only one file unit open to it.
Therefore, a segment directory that is open for reading
cannot be opened for writing, nor can a segment directory
that is open for writing be opened for writing or for read
ing.
See Chapter 10, File Attributes, for more information on
the read/write lock.

10 Insufficient access rights. If the segment directory being
opened already exists, this means that the user does not
have sufficient access to the segment directory. If the
segment directory does not exist, then the user does not
have Add access to the directory in which the segment
directory is to be created.

For calls to SRSFXS, this error code may indicate a prob
lem attaching to the directory specified by the pathname
argument of the calling sequence. In this case, the user
does not have Use access to at least one directory in the
pathname.

Third Edition 8-7

Advanced Programmer's Guide II: File System

Keyword
ESFNTF

ESBNAM

ESWTPR

ESMXQB

ESNFAS

V a l u e M e a n i n g

15 Not found. The segment directory being opened does not
exist The action portion of the key argument is probably
KSREAD, otherwise the segment directory would be
created.

For calls to SRSFXS, this error code may indicate a prob
lem attaching to the directory specified by the pathname
argument of thecalling sequence. In this case, at least one
directory in the pathname does not exist. Even if the ac
tion portion of the key argument is KSRDWR, no directo
ry is created via a call to SRSFXS. Use the DIRSCR sub
routine to create a directory.

17 Illegal name. The filename or pathname as supplied by
the calling program is not valid. See the PRIMOS User's
Guide for a description of the valid syntax for a filename
and pathname.

56 The disk is write-protected. A segment directory cannot
be opened for writing, nor can it be created, on a write-
protected disk. (Disk write-protection is enabled using
the ADDISK command, described in the Operator's
Guide to System Commands.)

143 Maximum quota exceeded. This error can occur only if a
new segment directory is being created, and cannot occur
if the action portion of the key argument is KSREAD.

189 Top-level directory not found or inaccessible (SRSFXS
only). The first directory name supplied in the pathname
could not be located on any of the system disks.

File Unit Number: The returned file unit number is valid only when the
returned error code is 0. After opening a segment directory, your program passes
the returned file unit number to other system subroutines (such as SGDRSS and
SGDSOP) to manipulate the segment directory and its members.
Once your program closes the segment directory, the file unit number is returned
to the free pool for reuse by PRIMOS when another file is opened.
File Type: The returned file type is valid only when the returned error code is
0, and the segment directory is actually opened. The file type is one of the
following five values:
Value

0
Meaning
A SAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it. (See
Chapter 7, Text Storage and Retrieval, for information on how to
do this.)

8-8 Third Edition

Data Storage and Retrieval

1 A DAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it (See
Chapter 7, Text Storage and Retrieval, for information on how to
do this.)

2 A SAM segment directory (SEGSAM) has been opened. Use
SGDRSS to operate on members of this segment directory.

3 A DAM segment directory (SEGDAM) has been opened. Use
SGDRSS to operate on members of this segment directory.

4 A root-entry directory has been opened. Use DIRSLS, DIRSRD,
or ENTSRD to read information on files in this directory. (See
the section entitled File Directories, later in this chapter.)

Note It is important to understand that opening a segment directory is very different from
opening a segment directory member. The above section describes how to open a
segment directory. Information on opening members of a segment directory is in an
ensuing section entitled How to Open a Member File Within a Segment Directory.

Example: The following example shows how a FORTRAN program would
open the object MYSEGDIR in the current directory for reading and writing,
creating a SAM segment directory if it does not already exist:

CALL SRCH$$(K$RDWR+K$NSGS+K$GETU, 'MYSEGDIR' ,8,UNIT,TYPE,CODE)
IF (CODE.NE.0) GO TO 1000

1000 CALL ERRPR$(K$IRTN,CODE,'MYSEGDIR', 8,'MYPROGRAM',9)
RETURN

How to Position a Segment Directory
Before opening a file within a segment directory, your program must position the
segment directory to the appropriate member file. You position a segment
directory by using the SGDRSS subroutine. When your program calls SGDRSS
to position a segment directory, it provides

• The file unit of the open segment directory
• A key that specifies that a position operation is to be performed
• The desired position of the segment directory, also known as the member

file number

Third Edition 8-9

Advanced Programmer's Guide II: File System

The SGDRSS subroutine attempts to position the specified segment directory,
and returns to your program

• An error code indicating whether the operation was successful
• A file existence indicator. This integer indicates whether the specified

position indicates an existing file, a nonexistent file, or lies beyond the
limits of the segment directory

This section describes the input and output parameters that apply when calling
SGDRSS to position a segment directory, and then shows a sample call to
SGDRSS. Figure 8-3 illustrates the calling sequence of SGDRSS to position a
segment directory.

8-10 Third Edition

Data Storage and Retrieval

Position Segment Directory to Entry Number

Unit Number
of Segment

Directory

K$SPOS
Desired Position

(member file number)

HALF HALF HALF
INT ENT ENT

I I
SGDR$$ (key, unit, position, result, code)

HALF HALF
ENT ENT

Standard
Error
Code

1: position Contains a File
2: position Contains No File
3: position Is Beyond End of Segment Directory

Q08J03D100563LA

Figure 8-3. Calling Sequence of SGDR$$ to Position a Segment Directory

Third Edition 8-11

Advanced Programmer's Guide II: File System

Desired Position of the Segment Directory: Your program passes the
desired position of the segment directory, which ranges from 0 to 65535 (-1
signed), inclusive. The resulting position in the segment directory may or may
not have a member file present.
Error Code: An output argument, code, informs your program of the success
or failure of the operation. If code is 0, the operation was entirely successful.
Otherwise, code is always positive. After a call to SGDRSS to position a
segment directory, code may have one of many values. Advanced Programmer's
Guide: Appendices and Master Index of this series contains a comprehensive list
of all standard file system error codes. Error codes specific to this operation are:

K e y w o r d V a l u e M e a n i n g
ESEOF 1 End of file. The desired position is beyond the end of the

segment directory. The segment directory is left posi
tioned at the end of the directory. If a call to SRCHSS
with a key argument of KSWRIT or KSRDWR is per
formed within the segment directory at this point, a new
file is created and the segment directory is automatically
extended by one file entry.

ESUNOP 3 Unit not open. The specified file unit is not open. This
usually indicates a program error, although it can also be
the result of the user exiting the program via CON
TROL-P, typing CLOSE ALL, and then starting the pro
gram again by typing START.

File Existence Indicator: If the positioning operation is successfully
performed, SGDRSS returns a file existence indicator (result) to your program.
This variable takes on one of the following values:

V a l u e M e a n i n g
1 The specified position is within the bounds of the segment

directory, and a member file exists at this position. In other
words, a member file exists with this member file number.

0 The specified position is within the bounds of the segment
directory, but no member file exists at this position. In other
words, no file exists with this member file number.

-1 The specified position is at the end of the segment directory.
Therefore, no member file exists at this position. If a new
member file is created at this position, the segment directory is
automatically extended to accommodate it; however, the file
number of the newly created member file is not necessarily
position, but is instead the end-of-file member number plus one
(which may be less than or equal to position).

8-12 Third Edition

Data Storage and Retrieval

Example: The following sample use of SGDRSS positions the segment
directory open on file unit SGUNIT to member file number 5. If the file exists,
it prints the word EXISTS. If the file does not exist, it prints the words NOT
THERE. If the position is at the end of the segment directory, it prints the words
AT END OF SEGDIR.

CALL SGDR$$(K$SPOS,SGUNIT,5,INDIC8,CODE)
IF (CODE.NE.0) GO TO 1000
IF (INDIC8) 10, 20, 30

C
10 CALL TNOU('AT END OF SEGDIR',16)

GO TO 100
20 CALL TNOU('NOT THERE',9)

GO TO 100
30 CALL TNOU('EXISTS', 6)

GO TO 100
C
100

1000 CALL ERRPR$(K$IRTN,CODE,'SGDR$$ error',12,'MYPROGRAM',9)
RETURN

How to Extend a Segment Directory
Sometimes when you attempt to create a new member file within a segment
directory, the member file number represents a position beyond the end of the
segment directory. This situation is indicated by a returned error code of ESEOF
when the program attempts to position the segment directory. To circumvent
this situation, your program must extend the segment directory.
When a segment directory is extended, PRIMOS adds new placeholders for
segment directory members. These placeholders represent nonexistent files: they
may be used by your program to hold new files. Use the SGDRSS subroutine to
extend a segment directory. When your program calls SGDRSS to extend a
segment directory, it provides

• The file unit of the open segment directory.
• A key that specifies that an extend operation is to be performed
• The desired size of the segment directory, also known as the new

end-of-segment-directory location

This section describes the input and output parameters that apply when calling
SGDRSS to extend a segment directory, and then shows a sample call to
SGDRSS. Figure 8^1 illustrates the calling sequence of SGDRSS to extend a
segment directory.

Third Edition 8-13

Advanced Programmer's Guide II: File System

Extend (or Truncate) Segment Directory

Unit Number
of Segment

Directory

K$MSIZ

Desired Size
(number of

possible members)

0 (zero)

I .. I
HALF HALF HALF HALF
E N T E N T E N T E N T

1 I
SGDR$$ (key, unit, new_size, ignored, code)

HALF
ENT

Standard
Error
Code

Side Effects: Position of unit after operation is at end of segment directory if code is 0,
undefined otherwise.

Q08MXH0056.3LA

Figure 8-4. Calling Sequence of SGDR$$ to Extend a Segment Directory

8-14 Third Edition

Data Storage and Retrieval

Desired Size of the Segment Directory: Your program passes the desired
size of the segment directory (new_size), which ranges from 0 to 65535 (-1
signed), inclusive.

Note You cannot use KSMSIZ to extend a segment directory to a full length of 65,536 member
entries, because the data type of the desired size cannot accommodate the number 65536.
If it is necessary to extend a segment directory to 65,536 entries,

1. extend it to 65,535 entries using SGDRSS, which leaves the segment directory unit
positioned at the end of the segment directory;

2. use SGDSOP to create a member file, which, when at the end of a segment
directory, automatically extends the segment directory by one entry;

3. use CLOSFU to close the newly created (and empty) member file;
4. use SGDSDL to delete the member file, leaving an empty entry at member file

number 65535.

Keep in mind that a segment directory of size position can have member file numbers
ranging from 0 through position -1. For example, extending a segment directory to 65
entries for member file numbers ranging from 0 through 64, but not including member
file number 65.

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to SGDRSS to
extend a segment directory, code may have one of many values. Advanced
Programmer's Guide: Appendices and Master Index of this series contains a
comprehensive list of all standard file system error codes. Error codes specific to
this operation are

K e y w o r d V a l u e M e a n i n g
ESUNOP 34 Unit not open. The specified file unit is open only for

reading, or is not open. This usually indicates a program
error, although it can also be the result of the user exiting
the program via CONTROL-P, typing CLOSE ALL, and
then typing START.

ESDKFL 9 The disk is full. The segment directory may or may not
have been extended, but it has not been extended to the
desired size. The segment directory is left positioned at
the end of the directory.

ESMXQB 143 Maximum quota exceeded. The segment directory may
or may not have been extended, but it has not been ex
tended to the desired size. The segment directory is left
positioned at the end of the directory.

Third Edition 8-15

Advanced Programmer's Guide II: File System

Example: The following sample use of SGDRSS extends the segment
directory open on file unit SGUNIT to hold 205 entries.

CALL SGDR$$(K$MSIZ,SGUNIT, 205,IGNORE,CODE)
IF (CODE.NE.0) GO TO 1000

C
1000 CALL ERRPR$(K$IRTN,CODE,'SGDR$$ error', 12,'MYPROGRAM',9)

RETURN

How to Open a Member File Within a Segment Directory
Before data in a member file are accessed, the file must be opened. To open a
file within a segment directory, have your program position the segment
directory by using the SGDRSS subroutine, and then open the member file by
using the SGDSOP subroutine. When your program calls the SGDSOP
subroutine, it provides the following items of information

• The file unit number of the open segment directory that is positioned to the
member file to be opened

• A key that specifies how the member file is to be opened

The SGDSOP subroutine attempts to open the specified file and returns to your
program

• An error code indicating whether the operation was successful
• A file unit number that identifies the open file. This number is used when

performing operations (such as read and write) on an open file.
• The file type, indicating the type of file just opened (including SAM,

DAM, CAM, SEGSAM, and SEGDAM).

This section describes the input and output parameters used when calling
SGDSOP, and then shows a sample call to SGDSOP. Figure 8-5 illustrates the
calling sequence of SGDSOP.

8-16 Third Edition

Data Storage and Retrieval

Open Member of Segment Directory

-10000
(find available unit number)

1<n<126
(use this unit number)

Unit Number
of Segment

Directory

KSREAD
KSWRIT
KSRDWR
KSVMR

HALF HALF HALF
ENT ENT ENT

Type of NewlyCreated File
KSNSAM
KSNDAM
KSNSGS
KSNSGD
K$NCAM

HALF
ENT

♦ ♦ ♦ ♦
SGDSOP (key, seg-unit, file-unit, type, new-type, code)

HA
EN

LF
rr

HA
E>

.LF
IT

HALF
ENT

I
1

Unit N
Member C

umber
>pened On

Standard
Error
Code

Type of File Opened
Value

0
1
2
3
7

Type
SAM File
DAM File

5AM Segdir
DAM Segdir
CAM File

Side Effects: If seg-unit is at end of segment directory and key is KSWRIT or K$RDWR, SGDSOP
attempts to automatically extend segment directory by one entry, which also reposi
tions seg-unit to new end-of-segdir position; otherwise, size of segment directory and
position of seg-unit remain unchanged.

Q08JD5D100563LA

Figure 8-5. Calling Sequence of SGD$OP

Third Edition 8-17

Advanced Programmer's Guide II: File System

Key: The key argument equals action. Its values and meanings are

Va l u e M e a n i n g
action Specifies how the file is to be opened. This distinguishes

between a file being open for reading, for writing, and for both
reading and writing. These states are often identified by the
mnemonics R, W, and RW (or WR), respectively. The keywords
used for opening files are

Keyword Value

KSREAD

KSWRIT

KSRDWR

KSVMR 16

Meaning
Open a file for reading only.
Open a file for writing only.
Open a file for reading and writing.
Open a file for VMFA read, used only
before calling one of the EPF subrou
tines to initialize or execute the file.

If your program attempts to write to a file that is open for
reading, an error code of ESUNOP (Unit not open) is returned to
your program. This same error code is returned if your program
attempts to read a file that is open for writing.

Desired Unit Number: Your program passes the value -10000 to indicate
that PRIMOS is to choose an available file unit number. If you want your
program to specify the unit number instead of letting PRIMOS select the
number, your program supplies a unit number between 1 and 126 (or 1 and 15
for a program running under PRIMOS II). SGDSOP returns the chosen file unit
number used as the value of the SGDSOP function.
Error Code: An output argument, code, informs your program of the success
or failure of the operation. If code is 0, the operation was entirely successful.
Otherwise, code is always positive. After a call to SGDSOP to open a segment
directory member, code may have one of many values. Advanced Programmer's
Guide: Appendices and Master Index of this series contains a comprehensive list
of all standard file system error codes. Error codes specific to this operation are

8-18 Third Edition

Data Storage and Retrieval

Keyword
ESFIUS

ESDKFL

ESNRIT

ESFNTS

ESMXQB

ESNINF

V a l u e M e a n i n g

5 File in use. The file being opened is already open on
another file unit, or is being used by another user.
Normally, a file that is open for reading cannot be opened
for writing, nor can a file open for writing be opened for
reading. A file that is open for writing can have only one
file unit open to it, whereas a file open for reading can
have many file units open to it.

If you expect your program to open a file that may occa
sionally be in use by another process for a short time, con
sider having your program repeatedly attempt to open an
in-use file for 30 seconds or a minute, sleeping one second
in between each attempt by calling SLEEPS.

See Chapter 10, File Attributes, for more information on
the read/write lock.

9 The disk is full. This error can occur only if a new file is
being created, and hence cannot occur if the action portion
of the key argument is KSREAD.

10 Insufficient access rights. If the file being opened already
exists, this means that the user does not have sufficient
access to the parent segment directory. If the file does not
exist, then the user does not have Write access to the parent
segment directory in which the file is to be created.

16 Not found in segment directory. The file being opened
does not exist in the segment directory. The action portion
of the key argument is typically KSREAD; otherwise the
file would have been created.

143 Maximum quota exceeded. This error can occur only if a
new file is being created, and hence cannot occur if the
action portion of the key argument is KSREAD.

159 No information. This indicates that some error occurred,
but the user does not have List access to the directory in
volving the error. In such a case, the ESNINF error code is
always returned to prevent the user or calling program
from being able to determine any information on the direc
tory. Therefore, this error code is to be interpreted as any
possible error, in addition to a case of insufficient access.

File Unit Number: The returned file unit number is valid only when the
returned error code is 0. After opening a file, your program passes the returned
file unit number to other system subroutines (such as PRWFSS and RDLINS) to
read, write, and position the file.
Once your program closes the file, the corresponding file unit number can no
longer be used. It may then be reused by PRIMOS when another file is opened.

Third Edition 8-19

Advanced Programmer's Guide II: File System

File Type: The returned file type is valid only when the returned error code is
0. The file type is one of the following five values:

Va l u e M e a n i n g
0 A SAM file has been opened. Use RDLINS, WTLINS,

PRWFSS, and similar subroutines to read or write it. (See
Chapter 7, Text Storage and Retrieval, for information on how to
do this.)

1 A DAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it. (See
Chapter 7, Text Storage and Retrieval, for information on how to
do this.)

2 A SAM segment directory (SEGSAM) has been opened. Use
SGDRSS to operate on members of this segment directory.

3 A DAM segment directory (SEGDAM) has been opened. Use
SGDRSS to operate on members of this segment directory.

7 A CAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it. (See
Chapter 7, Text Storage and Retrieval, for information on how to
do this.)

New File Type: The new file type specifies what type of file should be
created if the file does not already exist. (The file is created only if it is being
opened for writing or for reading and writing.) The keywords used for text or
data files are

Keyword Value

KSNSAM

KSNDAM 1024

KSNSGS 2048

KSNSGD 3072

KSNCAM 4096

Meaning
Create a new threaded (SAM) file. (This is the default.)
Create a new directed (DAM) file.
Create a new threaded (SAM) segment directory.
Create a new directed (DAM) segment directory.
Create a new contiguous (CAM) file.

SAM and DAM files differ only in performance and storage efficiency, as
described in Chapter 3, Accessing the PRIMOS File System.
Examples: The following example shows how a FORTRAN program would
open the file at the current position for reading in the segment directory open on
unit SGUNIT.

8-20 Third Edition

Data Storage and Retrieval

UNIT=SGD$OP(K$READ,SGUNIT,-10000,TYPE,CODE]
IF (CODE.NE.0) GO TO 1000

1000 CALL ERRPR$(K$IRTN,CODE,'Segdir file','MYPROGRAM',9)
RETURN

The next example illustrates the use of the new-type value in the calling
sequence to SGDSOP. The file at the current position is opened for reading and
writing in the segment directory open on unit SGUNIT. If it does not exist, it is
created as a DAM (directed) type file. Only the subroutine call itself is shown;
the error code is examined in the same fashion as shown in the above example.

UNIT=SGD$OP(K$RDWR,SGUNIT,-10000,TYPE,K$NDAM,CODE)

How to Delete a Member File Within a Segment Directory
Your program can delete a member file within a segment directory by
positioning the segment directory with the SGDRSS subroutine, and then using
the SGDSDL subroutine to actually delete the file. When calling the SGDSDL
subroutine, your program provides the file unit number of the open segment
directory that is positioned to the file to be deleted. The SGDSDL subroutine
attempts to delete the specified file, and returns an error code indicating whether
the operation was successful.
This section describes the input and output parameters used when calling
SGDSDL, and then shows a sample call to SGDSDL. Figure 8-6 illustrates the
calling sequence of SGDSDL.

Third Edition 8-21

Advanced Programmer's Guide ll: File System

Delete Member of Segment Directory

Unit Number
of Segment

Directory

HALF
ENT

SGD$DL (unit, code)

HALF
ENT

Standard
Error
Code

QP8J06D100563LA

Figure 8-6. Calling Sequence of SGD$DL

Error Code: An output argument, code, informs your program of the success
or failure of the operation. If code is 0, the operation was entirely successful.
Otherwise, code is always positive. After a call to SGDSDL to delete a segment
directory member, code may have one of many values. Advanced Programmer's
Guide: Appendices and Master Index of this series contains a comprehensive list
of all standard file system error codes. Error codes specific to this operation
follow.

8-22 Third Edition

Data Storage and Retrieval

K e y w o r d V a l u e M e a n i n g
ESFDEL 11 File open on delete. The file to be deleted is already open

on another file unit, or is being used by another user.

ESFNTS 16 Not found in segment directory. The file being deleted
does not exist in the segment directory, or the segment di
rectory is positioned at the end of the directory.

ESSUNO 31 Segdir unit not open. The segment directory unit is open
only for reading, or is not open at all.

Example: The following example shows how a FORTRAN program would
delete the file at the current position in the segment directory open on unit
SGUNIT:

CALL SGD$DL(SGUNIT,CODE)
IF (CODE.NE.0) GO TO 1000

1000 CALL ERRPR$(K$IRTN,CODE,'Segdir file','MYPROGRAM',9)
RETURN

Scanning a Segment Directory
If you want your program to scan a segment directory for all of its members, you
use the SGDRSS subroutine. In addition to the functions described earlier, this
subroutine can find the file numbers of all of the members of a segment
directory. This is referred to as the find full entry function.
In addition, you can use the SGDRSS subroutine to find all of the unused file
numbers in a segment directory. This capability is useful when your program
needs to create a new segment directory member. Your program can scan the
segment directory for free member numbers, and use one of these numbers for
the new member it is going to create. This capability is referred to as the find
free entry function.
The find full entry and find free entry functions are very similar. Your program
provides the starting position of the segment directory, and SGDRSS searches the
segment directory for the first full or free entry starting at that position and
continuing toward the end of the segment directory. When SGDRSS finds the
appropriate entry, it leaves the segment directory at that position and returns the
position to your program. (The returned position also serves as the file number
of a new or existing segment directory member.)
The only difference between the two functions is that the find full entry function
of SGDRSS sets the position of the segment directory at the first position that
corresponds to an existing member of the segment directory, whereas the find

Third Edition 8-23

Advanced Programmer's Guide II: File System

free entry function of SGDRSS sets the position of the segment directory at the
first position that corresponds to an unused member number in the segment
directory.
When your program calls SGDRSS to search a segment directory for a full or
free position, it provides

• The file unit of the open segment directory
• The starting position of the segment directory, also known as the first file

number to be checked

The SGDRSS subroutine searches the specified segment directory and returns to
your program

• An error code indicating whether the operation was successful
• The ending position of the segment directory following the search, also

known as the first full or free entry following the specified starting position

This section describes the input and output parameters that apply when calling
SGDRSS to search a segment directory, and then shows a sample call to
SGDRSS. Figure 8-7 illustrates the calling sequence of SGDRSS to scan a
segment directory.

8-24 Third Edition

Data Storage and Retrieval

Scan Segment Directory for Next Full/Free Entry

Unit Number
of Segment

Directory

f KSFULL 1
| K$FREE J

Starting Position of Scan
(0 if first scan, or position
of last full/free entry plus 1

if not first scan)

HALF HALF
ENT ENT HALF

ENT

SGDR$$ (key, unit, start_position, end jposition, code)

I I
HALF HALF
E N T E N T

Standard
Error
Code

Position of Full or Free Entry
or -1 if No Full/Free Entry Found

(Note ambiguity: -1=65535 unsigned,
which is a valid member file number)

Side Effects: The position of unit is left at end-position if desired entry is found; otherwise, unit is
positioned to end of segment directory.

QD8O7D100563LA

Figure 8-7. Calling Sequence of SGDR$$ to Scan a Segment Directory

Third Edition 8-25

Advanced Programmer's Guide II: File System

Key: Set the key argument to one of the following two values:

Value Meaning
KSFULL Find the first full entry
KSFREE Find the first free entry

Starting Position of the Segment Directory: Your program passes the
starting position of the segment directory, which ranges from 0 to 65535 (-1
signed). The resulting position in the segment directory may or may not have a
file present.
Error Code: An output argument, code, informs your program of the success
or failure of the operation. If code is 0, the operation was entirely successful.
Otherwise, code is always positive. After a call to SGDRSS to search a segment
directory, code may have one of many values. Advanced Programmer's Guide:
Appendices and Master Index of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this operation are

Keyword
ESEOF

ESUNOP

V a l u e M e a n i n g

1 End of file. The starting position is beyond the end of the
segment directory. The segment directory is left posi
tioned at the end of the directory. If a call to SRCHSS
with a key argument of KSWRIT or KSRDWR is per
formed within the segment directory at this point, a new
member file is created, and the segment directory is auto
matically extended by one file entry.

3 Unit not open. The specified file unit is not open. This
usually indicates a program error, although it can also be
the result of the user exiting the program by means of a
CONTROL-P sequence, typing CLOSE -ALL, and then
typing START.

The Ending Position of the Segment Directory: The SGDRSS
subroutine returns the ending position of the segment directory resulting from
the search operation. If the desired entry (full or free) was found, its position is
returned in this variable. Otherwise, a value of-1 is returned.

Caution A returned value of-1 in this variable corresponds to an unsigned value of 65535, and
hence is not a reliable indicator of a search operation that failed to find the desired entry.
When a value of -1 is returned in this field, have your program call SGDRSS to position
the segment directory to file number 65535. If SGDRSS returns an end-of-file error
code, or if it returns a file existence indicator of -1, then segment directory position
65535 does not exist. If SGDRSS returns a file existence indicator of 0, then segment
directory position 65535 exists, but there is no file with that number (the entry is free). If
it returns a file existence indicator of 1, then file number 65535 exists (the entry is full).

8-26 Third Edition

Data Storage and Retrieval

Example: The following sample subroutine displays a list of all full entries in
an open segment directory by using SGDRSS to scan for existing entries.

SUBROUTINE LISTEM(SGUNIT,CODE)
INTEGER*2 SGUNIT,CODE

C
$INSERT SYSCOM>ERRD.INS.FTN
$INSERT SYSCOM>KEYS.INS.FTN
C

INTEGER*2 FILNBR,NXTNBR,MYTH
C

FILNBR=0
C
10 CALL SGDR$$(K$FULL,SGUNIT, FILNBR,NXTNBR,CODE)

IF (CODE.NE.0) RETURN
C

IF (NXTNBR.NE.-l) GO TO 20
C
C The returned file number is -1, or 65535 unsigned. Find out
C if file number 65535 is a myth.
C

CALL SGDR$$(K$SPOS,SGUNIT,-1,MYTH,CODE)
IF (CODE.NE.E$EOF) GO TO 15

C
CODE=0 /* Treat end-of-file as no more full entries.
GO TO 10 0

C
15 IF (MYTH.LE.O) GO TO 100 /* No entry there.
C
C We have a file number in NXTNBR, print out the number with
C an optional header.
C
20 IF (FILNBR.NE.0) GO TO 30 /* First full entry?
C

CALL TNOU('File numbers:',13) /* Yes, explain the list.
C
30 CALL TNOUA(' ' ,2) / * A l i t t le indenta t ion.

CALL TOVFD$(NXTNBR) /* Number may be negative, of course.
CALL TNOU(0,0) /* End of line.

C
IF (NXTNBR.EQ.-l) GO TO 100 /* Definitely last entry?
FILNBR=NXTNBR+1 /* No, search for next entry.
GO TO 10 /* Thanks, Debbie...

C
100 IF (FILNBR.NE.0) RETURN /* Finished with listing.
C

CALL TNOU('No files.',9)
RETURN

C
END

Third Edition 8-27

Advanced Programmer's Guide II: File System

File Directories

Relating primarily to the manipulation of file directories themselves, this section
describes

• How to create a file directory
• How to open a file directory
• How to scan a file directory
• How to determine a new filename

The subroutines most often used when accessing file directories are

Subroutine Use
DIRSCR Creates a directory. Your program passes the pathname of the

directory to DIRSCR along with a structure defining the initial
state of the directory. DIRSCR creates the specified directory.
Your program may then populate the directory with new file
system objects.

SRSFXS Accepts a pathname and calls SRCHSS to manipulate the
directory according to the specified key.

SRCHSS Accepts a filename, and searches for the directory in the current
directory. The SRSFXS subroutine calls SRCHSS after it
attaches to the directory specified by the supplied pathname.
SRCHSS can open, close, change access on, or verify the
existence of the directory.

DIRSRD Reads the next entry from an open directory, and returns a
structure that describes the name of the entry and its attributes.
Your program can use DIRSRD to read successive entries in a
directory.

ENTSRD Reads a particular entry from an open directory, and returns a
structure that describes the name of the entry and its attributes.
Your program can use ENTSRD to read the attributes of a
particular entry in a directory by specifying the name of the
entry.

Creating a File Directory

Your program creates file directories by using the DIRSCR subroutine. Your
program supplies the pathname of the directory to be created along with control
information on the type of directory to be created and on its attributes. Once
created, the directory contains no file system objects; your program may then
create new file system objects in the newly created directory.

8-28 Third Edition

Data Storage and Retrieval

When your program calls the DIRSCR subroutine, it provides

• The pathname of the directory to be created
• The attributes of the directory

The DIRSCR subroutine attempts to create the directory and returns to your
program an error code indicating whether the operation was successful.
This section describes the input and output parameters to use when calling
DIRSCR, and then shows a sample call to DIRSCR. Figure 8-8 illustrates the
calling sequence of DIRSCR.

Third Edition 8-29

Advanced Programmer's Guide II: File System

Create File Directory

Pointer to
Structure

Halfword
dec

Pathname of
Directory to
Be Created

<=128
STRING PTR STRUC

" f t
DIR$CR (name, addr(attributes), code)

HALF
ENT

20

Version Number of Structure (1)

Type of New Directory:
K$SAME - same as parent
K$PWD - password directory
Maximum Quota
(0 if no limit)
Length of Access Category
Name (0 if default protection)

Access Category Name
(not necessary if length is 0)

Standard
Error
Code

Side Effects: Resets current directory if name contains a > symbol; otherwise, new directory created in
current directory.

Q08J08D1005631A

Figure 8-8. Calling Sequence of DIR$CR

8-30 Third Edition

Data Storage and Retrieval

Attributes of the Directory: Your program constructs a structure that
contains the attributes of the directory to be created, and passes a pointer to this
structure to DIRSCR. This structure describes

• Whether the directory is to be the same type (ACL or password) as its
parent, or is to be made a password directory.

• The maximum quota of the directory.

• The access category that is to protect the directory.

Normally, you set the directory type to the same type as its parent, the maximum
quota to 0 (meaning no quota), and the access category to null (meaning default
protection).
Error Code: An output argument, code, informs your program of the success
or failure of the operation. If code is 0, the operation was entirely successful.
Otherwise, code is always positive. After a call to DIRSCR to create a file
directory, code may have one of many values. Advanced Programmer's Guide:
Appendices and Master Index of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this operation follow.

Keyword
ESBPAR

ESDKFL

ESNRIT

ESFNTF

ESEXST

ESMXQB

ESNOQD

V a l u e M e a n i n g

6 Bad parameter. The maximum quota for the directory is
a negative number.

9 The disk is full. The new directory cannot be created.

10 Insufficient access rights. The user does not have suffi
cient access to create the specified directory. This error
code may also indicate a problem in attaching to the di
rectory specified by the pathname argument of the calling
sequence. In this case, the user does not have Use access
to at least one directory in the pathname.

15 Not found. There is a problem in attaching to the directo
ry specified by the pathname argument of the calling se
quence. In this case, at least one directory in the path
name does not exist.

18 Already exists. Another file system object already exists
with the name of the new directory. The existing object
may be a file directory, or some other file system object.

143 Maximum quota exceeded. The new directory cannot
be created.

144 Not a quota disk. The disk on which the directory is to be
created is not a quota disk, but the supplied structure indi
cates that a maximum quota is to be imposed.

Third Edition 8-31

Advanced Programmer's Guide II: File System

Keyword

ESPNAC

ESACNF

ESBVER

ESDTNS

ESNFAS

V a l u e M e a n i n g

148 Parent not an ACL directory. The parent directory of the
new directory is not an ACL directory, but the supplied
structure indicates that the new directory is to be pro
tected by an access category.

155 Access category not found. The access category to be
used to protect the newly created directory does not exist
in the parent directory.

158 Bad version. The version number of the supplied struc
ture containing the attributes of the directory is not 1.
The calling program must initialize this number to 1 be
fore calling DIRSCR.

173 Date and time not set yet. The supplied structure indi
cates that a quota is to be placed on the new directory, but
quotas cannot be imposed unless the system date and time
are set.

189 Top-level directory not found or inaccessible. The first
directory name supplied in the pathname could not be
located on any of the system disks.

Examples: The following PL/I code illustrates a sample call to DIRSCR to
create a new directory named FRODO in the HOBBIT directory. The newly
created directory is of the same type as the HOBBIT directory, is a non-quota
directory, and has no access category protecting it (it is protected by the access
on HOBBIT).

s t r u c . v e r s i o n = l ;
s t ruc .d i r_ type=k$same;
struc.max_quota=0;
struc.acc_cat=' ' ;

call dir$cr('HOBBIT>FRODO' , addr(struc),code);
if code/v=0 then call
er rpr$(k$ i r tn ,code, 'HOBBIT>FRODO',12,

'MYPROGRAM' , 9) ;

Opening a File Directory
Your program must open a directory before it may read entries in the directory.
To open the directory, your program uses the SRSFXS or SRCHSS subroutine.
When calling these subroutines, your program provides

• The name of the directory to be opened

• A key that specifies how the directory is to be opened

8-32 Third Edition

Data Storage and Retrieval

The SRSFXS or SRCHSS subroutine attempts to open the specified directory and
return to your program

• An error code indicating whether the operation was successful
• A file unit number that identifies the open directory; your program uses

this number when reading directory entries in an open directory
• The file type, indicating the type of file just opened (including SAM,

DAM, SEGSAM, SEGDAM, and Directory)

Additional information returned by SRSFXS is not relevant to this discussion.
This section describes the input and output parameters that apply when calling
SRSFXS and SRCHSS, and then shows a sample call to SRCHSS. Figure 8-9
illustrates the calling sequence of SRSFXS to open a directory; Figure 8-10
illustrates the SRCHSS calling sequence.

Third Edition 8-33

Advanced Programmer's Guide II: File System

Open a File Directory, With Possible Suffix

Pathname of
Object to Open

, K$READ"*" K$GETU

♦

Number of Suffixes
in suffixes Array

(0 means no suffix processing)

Array ofDesired
Suffixes

HALF
ENT

<=128
STRING

HALF -,
ENT

<=32
STRING
ARRAY

♦ ♦ I t
SRSFXS (key, name, unit, type, num_suffixes, suffixes, basename, suffix_used, code)

♦
HALF
INT

[ARRAY(2)] - FTN/
PMA
only*

HALF HALF
ENT ENT

File
Type

♦ I
<=32

STRING
HALF
INT

[

File Unit
Number

(1): Termination Character Position
(2): Length of Pathname]

(characters)
FTN/PMA only*

HALF
ENT

Standard
Error
Code

Index Into suffixes
of Suffix Used (matched)

(0 means null suffix)

Final Component of name
Without Suffix Used

(useful when appending another suffix)

Side Effects: May reset current attach point.
* Function value is returned in L-register; typically, you need only to declare as HALF INT, because
first datum is all you need and is in A-register. Otherwise, you must declare it as FULL INT to make
it work.

Q08J09D1005631A

Figure 8-9. Calling Sequence of SRSFX$ to Open a File Directory

8-34 Third Edition

Data Storage and Retrieval

Open File Directory by Object Name

Name of
Directory

KSREAD + KSGETU

Length of DirectoryName (characters)

HALF 32 ---
ENT STRING

.♦▶HALF
ENT

SRCH$$ (key, name, name-len, unit, type, code)

♦ ♦ I
HALF HALF HALF
ENT ENT ENT

File
Unit

Number

Standard
Error
Code

Object
Type

Q08.10.100563LA

Figure 8-10. Calling Sequence of SRCH$ to Open a File Directory

The Error Code: An output argument, code, informs your program of the
success or failure of the operation. If code is 0, the operation was entirely
successful. Otherwise, code is always positive. After a call to SRSFXS or
SRCHSS to open a directory, code may have one of many values. Advanced
Programmer's Guide: Appendices and Master Index of this series contains a
comprehensive list of all standard file system error codes. The error code
specific to this operation is

Third Edition 8-35

Advanced Programmer's Guide II: File System

K e y w o r d V a l u e M e a n i n g
ESNRIT 10 Insufficient access rights. This means that the user mn

ning your program does not have List access to the direc
tory.

For calls to SRSFXS, this error code may indicate a prob
lem attaching to the directory specified by the pathname
argument of the calling sequence. In this case, the user
mnning your program does not have Use access to at least
one directory in the pathname.

File Type: The returned file type is valid only when the returned error code is
0 and the directory is actually opened. The file type is one of the following five
values:

V a l u e M e a n i n g

0 A SAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it. (See
Chapter 7, Text Storage and Retrieval, for information on how to
do this.)

1 A DAM file has been opened. Use RDLINS, WTLINS,
PRWFSS, and similar subroutines to read or write it. (See
Chapter 7, Text Storage and Retrieval, for information on how to
do this.)

2 A SAM segment directory (SEGSAM) has been opened. Use
SGDRSS to operate on members of this segment directory. (See
the section Segment Directories, above, for information on how
to do this.)

3 A DAM segment directory (SEGDAM) has been opened. Use
SGDRSS to operate on members of this segment directory. (See
the section Segment Directories, above, for information on how
to do this.)

4 A directory has been opened. Use DIRSLS, DIRSRD, DIRSSE,
ENTSRD, and RDENSS to read information on files in this
directory.

Example: The following example shows how a FORTRAN program would
open the directory MYDIR in the current directory for reading:

8-36 Third Edition

Data Storage and Retrieval

CALL SRCH$$(K$READ+K$GETU,'MYDIR',5,UNIT,TYPE,CODE)
IF (CODE.NE.0) GO TO 1000

1000 CALL ERRPR$(K$IRTN,CODE,'MYDIR',5,'MYPROGRAM',9)
RETURN

How to Scan a File Directory
Once your program opens a directory, it may scan that directory. Scanning a
directory consists of reading file system object entries. Your program may read
entries sequentially, that is, in the order in which they appear in the directory, or
may read particular entries by name. This section describes how to read a
directory sequentially, one entry at a time, using the DIRSRD subroutine. To
read sequential entries several entries at a time, see the description of the
DIRSSE subroutine in Subroutines Reference II: File System. To read directory
entries by name, see Chapter 10, File Attributes.
After opening the directory, your program calls DIRSRD providing

• The file unit of the open directory
• A key that specifies the operation to be performed
• A pointer to a structure into which the entry information is to be stored
• The size of the storage structure

The DIRSRD subroutine finds the next sequential entry in the specified directory
and returns to your program an error code indicating whether the operation was
successful.
This section describes the input and output parameters to specify when you call
DIRSRD to scan a directory, and then shows a sample call to DIRSRD. Figure
8-11 illustrates the calling sequence of DIRSRD.

Third Edition 8-37

Advanced Programmer's Guide II: File System

Read Next Entry in File Directory

File Unit
of Directory

Length of Structure
(currently 37)

/ K$INIT 1
(̂ K$READ J

Pointer to
Structure

HALF HALF
INT ENT PTR HALF

ENT

v ? f w
DIR$RD (key, unit, addr(dir-entry), dir-entry-len, code)

STRUCT HALF
ENT

Object Name, Type,
and Attributes

Standard
Error Code

(ESBFTS implies success,
but more info available)

Side Effects: Repositions unit. Q08.J1D10056.3LA

Figure 8-11. Calling Sequence of DIR$RD

8-38 Third Edition

Data Storage and Retrieval

Key: Your program sets the key argument to one of the following values:

V a l u e M e a n i n g
KSREAD Read the next entry
KSINIT Reset to the beginning of the directory

Normally, your program passes the KSREAD value for key. Your program uses
the KSINIT value only if the open directory is to be read again from the
beginning, as in a two-pass directory scanning program.
Pointer to a Structure: Your program provides a structure that DIRSRD
fills in with information on the next entry in the directory. Your program passes
a pointer to this structure to DIRSRD. Assuming DIRSRD finds an entry, it fills
the structure with information such as the filename, the file type, and other
information on the file. See the description of the dir_entry structure in Chapter
10, File Attributes, for details.
Error Code: An output argument, code, informs your program of the success
or failure of the operation. If code is 0, the operation was entirely successful.
Otherwise, code is always positive. After a call to DIRSRD to scan a directory,
code may have one of many values. Advanced Programmer's Guide:
Appendices and Master Index of this series contains a comprehensive list of all
standard file system error codes. Error codes specific to this operation are

K e y w o r d V a l u e M e a n i n g
ESEOF 1 End of file. No more directory entries are present.

ESUNOP 3 Unit not open. The specified file unit is not open. This
usually indicates a program error, although it can also be
the result of the user exiting die program by means of a
CONTROL-P sequence, typing CLOSE -ALL, and then
typing START.

ESBFTS 35 Buffer too small. The supplied structure is too small to
hold the information. Unlike the other error codes, this
error code indicates that the operation succeeded, but that
only some of the available information (as much as the
calling program has asked for) has been returned in the
structure.

Example: The following subroutine displays the names of all the files in an
open file directory:

Third Edition 8-39

Advanced Programmer's Guide II: File System

l i s t _ fi l e _ n a m e s : p r o c (u n i t , c o d e) ;

del unit fixed bin(15),/* File unit directory is open on. */
code fixed bin(15); /* Standard f/s error code. */

/* Other declarations omitted. */

/* This subroutine assumes that the specified file unit is
already positioned at the beginning of the directory. It
therefore does not call DIR$RD with the K$INIT key. */

fi r s t = ' l ' b ;

do until (code/v=0) ;
ca l l d i r$ rd (k$ read ,un i t , add r (d i r_en t r y) ,31 ,code) ;
if code=0

then do;
i f first then cal l tnou('Fi le names: ' ,11)
fi r s t = ' 0 ' b ;
c a l l t n o u a (' ' , 2) ;
ca l l tnou(d i r_en t ry.name, leng th(t r im(d i r_en t ry.name,

'Ol 'b))) ; / * Don' t output t ra i l ing b lanks. * /
end; /* if code=0 */

end; /* do until (code/v=0) */
if code=e$eof

then do;
i f fi rs t then ca l l tnou('No fi les . ' ,9) ;
code=0;
end; /* if code=e$eof */

end; /* list file names: proc */

Reading and Writing Data Files
A data file is a file containing data that does not logically break down into single
8-bit bytes. For example, a file that contains a list of employee records that
contain some single-bit data is a data file, rather than a text file.
In general, PRIMOS does not distinguish between text and data files. PRIMOS
does provide a simple interface for variable-length record text files (the RDLINS
and WTLINS subroutines); this interface is described in Chapter 7, Text Storage
and Retrieval. The interface for data files is precisely the same interface used for
fixed-length record files, described in Chapter 7, Text Storage and Retrieval.
Many application programs store data files in segment directories. The
manipulation of data files in segment directories is described in the section
entitled Segment Directories, found earlier in this chapter. Whether a data file is
a member of a file directory or segment directory, however, does not affect how

8-40 Third Edition

Data Storage and Retrieval

it is read, written, extended, and truncated. These operations are very similar to
the operations performed on fixed-length record text files.
There are several important things to remember when you are designing a
program that reads and writes data files:

• There is no record length or blocking factor that PRIMOS is aware of. If
your program writes more or less data than originally specified in the
design specification for your program, PRIMOS does not know to truncate
or extend the data.

• Because there is no implicit record length, your program must satisfy its
own random-access position calculation requirements. PRIMOS provides
the ability to position a file only to a specified halfword location.

• PRIMOS allows data files to be read and written in any order. PRIMOS
imposes no sequential ordering, although such ordering is typically the
default.

• The only way your program may extend the length of a data file is by
writing new data starting at the end-of-file location; PRIMOS
automatically extends the end-of-file location as your program writes the
file.
PRIMOS allows your program to use more than one file unit at a time to
access a single file, assuming the read/write lock restrictions are satisfied.
You can use this capability to improve the performance of your program in
certain cases.
For example, suppose your program needs to read data record indexes at
the beginning of a large file, whereas the data records themselves are
scattered throughout the file. If your program uses two file units to access
the file simultaneously, your program can position one file unit at the
beginning of the file to access the indexing information rapidly, and use the
other file unit to retrieve and store the data records themselves.
In most cases, data files should be created as DAM files.

Questions and Answers About Data Files

This section answers some typical questions about data storage and retrieval.
See Chapter 7, Text Storage and Retrieval, for questions and answers about text
storage and retrieval, including opening files.

• Explain the relationship between SRSFXS and segment directories.

Third Edition 8-41

Advanced Programmer's Guide II: File System

SRSFXS is the only file system subroutine that allows references to files within
segment directories. A detailed description of accessing files within segment
directories is provided earlier in this chapter.
SRSFXS is a high-level interface for opening a segment directory member. You
typically use SRSFXS for opening one or two particular members of a segment
directory, because it provides a simpler interface than the more complex method
recommended in this chapter.

• Aren't there more subroutines I can use to do things like change filenames
and numbers, and determine pathnames?

Yes, there are. Most application programs do not need to use these subroutines
during most of their development process. However, functions such as changing
the number (position) of a segment directory member are sometimes useful when
you construct administrative tools for the application. Determining the full
pathname of a file system object is also useful.
For information on changing filenames and numbers, see the descriptions of the
SGDRSS and CNAM$$ subroutines in Subroutines Reference II: File System.
Similarly, the GPATHS subroutine is useful for determining the pathname of an
open file system object or an attach point. In fact, one of the examples in
Chapter 7, Text Storage and Retrieval, used GPATHS for a typical situation in
which the full pathname of an open file unit is quite useful.

8-42 Third Edition

Access Control Lists (ACLs)

9

This chapter discusses

• Subroutines used to manipulate ACLs
• How programs should parse an ACL
• Typical questions and answers about ACLs

The reader should be familiar with Access Control Lists (ACLs), as described in
the PRIMOS User's Guide.

Subroutines That Manipulate ACLs

Subroutines that manipulate ACLs are fully described in Subroutines Reference
II: File System. They are summarized briefly here.
When using these subroutines, you may wish to think of access categories as file
system objects that have specific ACLs set on them. An access category
centralizes access for several files and directories in one ACL represented by that
access category. In a sense, the access category itself is a placeholder file system
object with a specific ACL set on it. Envisioning access categories in this fashion
is particularly useful when using subroutines such as ACSSET, ACSCHG, and
ACSLST.

Setting Access on Files and Directories
You can set any of the following three accesses:

• Default
• Specific
• Category

Setting Default Access: To set access for a file or directory to the default
access, use the ACSDFT subroutine. The default access for a file system object

Third Edition 9-1

Advanced Programmer's Guide II: File System

comes from the ACL for the parent directory of that object. You cannot set the
MFD for a disk partition to default access. Figure 9-1 illustrates the calling
sequence for the ACSDFT subroutine.
Setting Specific Access: To set a specific ACL on a file or directory, use
the ACSSET subroutine. Your program provides a structure describing the
desired access. Figure 9-2 illustrates the calling sequence of the ACSSET
subroutine.

Setting Category Access: To set a category ACL on a file or directory, use
the ACSCAT subroutine. Your program passes the name of the access category
that is to protect the object. The access category must already exist in the same
directory as the object being protected. Figure 9-3 illustrates the calling
sequence of the ACSCAT subroutine.

Creating Access Categories
To create an access category, use the ACSSET subroutine. Your program passes
the name of the access category to be created and provides a structure describing
the desired access. Figure 9-2 illustrates the calling sequence of the ACSSET
subroutine.

9-2 Third Edition

Protect Object With Default ACL

Pathname of
Target Object

<=128
STRING

I
ACSDFT (name, code)

i
HALF
ENT

Standard
Error
Code

Figure 9-1. Calling Sequence of AC$DFT

Access Control Lists (ACLs)

Q09jOU)100S63LA

Third Edition 9-3

Advanced Programmer's Guide II: File System

Create or Replace Specific ACL of Object, or Replace ACL of Access Category

Pointer to
ACL Structure

Halfword
oct dec
0 0

Pathname of
Target Object

JkscreaI
J K$REP J

1 1

2 2

I I
122 82
123 83

Version Number of Structure (2)

HALF <-128 prpp Q-T?TTri
ENT STRING K1K »IRUC

1 1 1 !
ACSSET (key, name, addr(acl_struc), code)

HALF
ENT

Standard
Error
Code

Number of Access Pairs

Access Pair Number 1
(<=80 STRING)

Access Pair Number 2
(<=80 STRING)

Side Effects: May reset current attach point. Q09m£>100563LA

Figure 9-2. Calling Sequence of AC$SET

9-4 Third Edition

Access Control Lists (ACLs)

Protect Object With Access Category

Access Category Name
(must be in same directory

as target object)

Pathname of
Object to Be

Protected

< = 128 < = 32
STRING STRING

ACSCAT (target, category, code)

HALF
ENT

Standard
Error
Code

Side Effects: May reset current attach point. Q09D3D10056.3LA

Figure 9-3. Calling Sequence of AC$CAT

Third Edition 9-5

Advanced Programmer's Guide II: File System

Changing Access to a File System Object
When changing access to a file system object, the object must already be
protected by a specific ACL or a category ACL. To change the contents of an
access category, you treat the access category as a file system object protected by
a specific ACL.
Changing Access for a Specific-protected Object: if you wish to
change the access of a file or directory that is protected by an access category,
you have two choices:

• Change the ACL of the access category
• Set a new specific ACL on the file or directory

To change the ACL of an existing file system object protected by a specific
ACL, including an access category, use either the ACSCHG or ACSSET
subroutine, depending on the nature of the change. To modify the contents of an
existing ACL, use ACSCHG. To replace the existing ACL with an entirely new
ACL, use ACSSET. In both cases, your program provides a structure describing
the desired access.
Figure 9-4 illustrates the calling sequence of the ACSCHG subroutine. The
calling sequence of the ACSSET subroutine is illustrated in Figure 9-2.
When changing the ACL of an access category, keep in mind that the access for
all files and directories protected by the access category also changes. To change
the ACL of an access category, treat the access category as a file system object
protected by a specific ACL, as described earlier in this section.
To set a new specific ACL on a file or directory that is currently protected by a
category ACL, use the ACSLIK subroutine. This creates a specific ACL that
protects the file or directory in the same way as the category ACL. Now, use
ACSSET or ACSCHG on the file or directory to change the specific ACL for the
object.
Figure 9-5 illustrates the calling sequence of the ACSLIK subroutine.

Setting the Access for an Object to That of Another Object
To set the access for an object to that of another object, use the ACSLIK
subroutine. The access for the target object is copied from the ACL protecting
the model object, whether via default, specific, or category access. A specific
ACL with this access is then set on the target object by ACSLIK. The target and
model objects need not reside in the same lower-level directory, as the ACL is
copied by value, rather than by reference.

9-6 Third Edition

Access Control Lists (ACLs)

Change Protection of Object (Specifically Protected),
or Change Access Control List of Access Category

Halfword
oct dec
0 0

1 1

2 2

Pointer to
ACL Structure Version Number of Structure (2)

Number of Access Pairs

Pathname of
Taraet Obiect

Access Pair Number 1

l I (<=80 STRING)

'] ' i

T ▼
122 82
123 83

i Access Pair Number 2
< = 1 2 8 p n

STRING PR STRUC (<=80 STRING)

' ' ' 11
ACSCHG (name, addr(acl_struc), code)

HALF
ENT

Standard
Error
Code

Side Effects: May reset current attach point.
Q09O4D10056.3LA

Figure 9-4. Calling Sequence of AC$CHG

Third Edition 9-7

Advanced Programmer's Guide II: File System

Protect Object With Specific ACL According to ACL That Protects Reference Object

Pathname of Pathname of
Target Object Reference Object

<=128
STRING

<=128
STRING

1 1
ACSLIK (target, reference, code)

i
HALF
ENT

Standard
Error
Code

Side Effects: May reset current attach point. QP9D5D100563LA

Figure 9-5. Calling Sequence of AC$LIK

Figure 9-5 illustrates the calling sequence of the ACSLIK subroutine.

Reading the Access for an Object
To read the ACL protecting a file system object, use the ACSLST subroutine.
Your program provides a structure describing the ACL that is to be filled in by
ACSLST. Your program then analyzes the returned structure to determine the
access. Figure 9-6 illustrates the calling sequence of the ACSLST subroutine.

9-8 Third Edition

Access Control Lists (ACLs)

Retrieve Access Information for Specified Object

Pointer to ACL Structure
(may be NULL () if

maxjpairs is 0 (zero))
Pathname of
Target Object

<=128
STRING PTR

Version Number of Structure (2)
1

Maximum Number of Access Pairs to Be Returned in acl_struc
(0 means return no acl_struc information,
but still return acl_name and acljype)

STRUC HALF
ENT

I . I .
ACSLST (name, addr(acl_struc), maxjpairs, acl_name, acljype, code)

STRUC
I I l

<=128 HALF HALF
STRING ENT ENT

Halfword
oct dec
0 0
1 1
2 2

\ ♦
122 82
123 83

Version Number of Structure (2)
Number of Access Pairs Returned

Access Pair Number 1
(<=80 STRING)

I t
I Access Pair Number 2 I

(<=80 STRING)
W W W V V V N A A / V V W V V V V V V V W V I

Last Access Pair
(<=80 STRING)

Side Effects: May reset current attach point.

Standard
Error
Code

0: Protected by Specific ACL
1: Protected by Access Category
2: Default From Specific ACL
3: Default From Access Category
4: Target Is an Access Category

Pathname of Object That Protects
Target Object:
acljype acljname

0 Pathname of Target Object
1 Pathname of Access Category
2 Pathname of Ancestral Directory

With Specific ACL
3 Pathname of Access Category

Protecting Ancestral Directory
4 Pathname of Target Object

Q09.06D100563LA

Figure 9-6. Calling Sequence of AC$LST

Third Edition 9-9

Advanced Programmer's Guide II: File System

How Programs Should Parse an ACL

This section describes how to parse an ACL on an existing file system object.
The access string information also applies to constructing an ACL to be placed
on a file system object.
When the ACSLST subroutine is used to read an ACL, a list of access pairs is
returned. (The calling sequence of ACSLST is shown in Figure 9-6.) Each
access pair has the following format:

id'.access

Both id and access are at least one character long, separated by a colon (:). If
you are constructing an ACL to be passed to ACSCHG, access may be the null
string to indicate deletion of the access pair for the specified id.
The id portion of the access pair is either a user ID, a group name, or the
character string SREST. A group name begins with a period (.), whereas a user
ID does not.
The access portion of the access pair can be the character string NONE
(indicating no access rights), a character string listing individual access rights, or
the string ALL (indicating all access rights— OPDALURWX at Rev. 21.0 and
after). Note that ACSLST never returns a string representing all of the
supported access rights; it is translated to ALL. Because ALL may represent a
different set of rights at different revs, it is recommended that access rights be
checked individually using the CALACS subroutine. CALACS takes a list of
accesses you supply as input and checks against them. CALACS is described in
the Subroutines Reference II: File System.
You may design your program so that it ignores unrecognized characters.

Questions and Answers About ACLs

• Can ACL operations result in disk-full or quota-exceeded errors?

Yes. Even though specific ACLs do not appear as separate files, they do take up
room on the disk when they are created or modified. Therefore, it is possible to
exceed the capacity of the directory or the disk when

o Placing a specific ACL on an object that does not already have one
o Creating a new access category
o Updating the specific ACL of an object
o Updating the ACL of an existing access category

9-10 Third Edition

Access Control Lists (ACLs)

Changing the protection of an object from one category ACL to another
(existing) category ACL never results in a disk-full or quota-exceeded error.

• Is there a limit to how many access pairs can be put in a specific ACL or
access category?

Yes, there are two distinct limitations on access control lists:

o Limit on the number of access pairs passed in acl struc
o Limit on the maximum size of a physical ACL on the disk

The first limit is the maximum number of access pairs accepted by PRIMOS
ACS subroutines. This limit, named max acl entries, is currently 32. If your
program attempts to pass more than 32 access pairs to a subroutine such as
ACSSET and ACSCHG, the subroutine returns the error code E$PB AR (Bad
parameter) to your program. (The ACSLST subroutine places no limit on the
maxjpairs argument, because it never returns more than 32 access pairs.)
The second limit is more complex. The limit on the number of halfwords that a
physical representation of an ACL may take up on the disk is a PRIMOS
parameter named maxentjen, which is currendy 255. An ACL with no access
pairs (not counting the SREST access pair, which is present in every ACL, even
when not specified) takes up a minimum number of halfwords; named
base entry Jen, this value is currently 11. Finally, each access pair in an ACL
(excluding the SREST access pair) takes up 5 halfwords plus the number of
halfwords needed to contain the id portion of the access pair (not counting
trailing blanks).
Therefore, the second limit can be defined as follows:

11 + [for each access pair (5 + flength(id(n))+l)/2)] <= 255

If the second limit is exceeded, the ACS subroutine called by your program
returns the error code ESACBG (ACL too big) to your program, and does not
perform the requested operation.

Third Edition 9-11

File Attributes

10
This chapter first describes how to read the attributes of a file system object; then
it describes how to set each attribute. Finally, a question-and-answer section is
provided.

How to Read the File Attributes of an Object

To read the file attributes of a specific file system object, your program first
opens the parent directory of that object for reading. See Chapter 8, Data
Storage and Retrieval, for a description of how to open a directory for reading.
Then, your program calls the ENTSRD subroutine to read the attributes.
Remember that your program should close the parent directory when finished
with it. Figure 10-1 illustrates the calling sequence of ENTSRD. Chapter 8,
Data Storage and Retrieval, describes DIRSRD, a similar subroutine that is used
to scan a directory sequentially for entries and read their attributes.
The structure returned by the ENTSRD subroutine (dir_entry) contains the
objectname, the file type of the object, and all other attributes of the object. The
format of this structure is shown in Figure 10-2.

Third Edition 10-1

Advanced Programmer's Guide II: File System

Read Particular Named Entry in File Directory

Name of
Object

Length of Structure
(currently 31)

File Unit
of Directory

Pointer to
Structure

half < = 32
ent string PTR HALF

ENT

ENT$RD (unit, name, addr(dir_entry), dir_entryjen, code)

STRUCT HALF
ENT

Object Name, Type,
and Attributes

Standard
Error Code

(E$BFTS implies
success, but more

info available)

Side Effects: Repositions unit. Q10JDW100S63LA

Figure 10-1. Calling Sequence of ENT$RD

10-2 Third Edition

File Attributes

Halfword
Offset Bit #
oct dec 1 2 10 11 12 13 14 15 16
0 0

1 1

20 16

21 17

22 18

23 19

24 20

25 21

26 22

27 23

30 24

31 25

32 26

33 27

34 28

35 29

36 30

directory entry type: 3 for access
category; 2 for other objects

length of structure (halfwords)
-currently 31

name of object, 32 characters, blank-padded

has
own
acl

long
rat

header

reserved bits

I I

(Aacl) owner rights
delete/
truncate wri te read

L _

dumped
bit

PRIMOS
II

modified

reserved bits
I

specialfile
read/write

lock
reserved

bits

year last modified minus 1900
_ l i ' ' i '

delete-
protected

reserved bits
J I L

(Aacl) non-owner rights

tSSL «** «"*
I i _

reserved bits
J I L

file type

month last modified
(January is month 1)
_ J I L _

date last modified (1-31]

I I I I
time last modified (seconds since midnight divided by 4)

logicaljype

hash thread

trun
cated reserved bits

year last backed-up minus 1900
_ l I I I I L _

month last backed-up
(January is month 1)

I I I

date last backed-up (1-31)

1
time last backed-up (seconds since midnight divided by 4)

year created minus 1900
I I I I i

month created
(January is month 1)
_ l I l _

date created (1-31

- J I I L
time created (seconds since midnight divided by 4)

year last accessed minus 1900
_ J I I » i i

month last accessed
(January is month 1)

X
date last accessed (1-31)

±
time last accessed (seconds since midnight divided by 4)

QI0D2D100S63LA

Figure 10-2. Format of Directory Entry Returned by DIR$RD or ENT$RD

Third Edition 10-3

Advanced Programmer's Guide II: File System

In PL/I, the declaration of dirjntry is

del 1 dir_entry based, /* Logical object entry. */
2 ecw, /* Entry control word. */

3 type bit(8), /* 3 for ACAT, 2 otherwise. */
3 len bit(8), /* Length of structure (currently 31). */

2 name char(32), /* Name of object. */
2 pwprot_or_delprot, /* Password protection bits (for non-

ACL dirs) or delete-protect bit
(for ACL dirs). */

3 owner, /* Owner protection bits. */
4 reserved bit(5),

4 delete bit(l), /* Can delete or truncate object. */
4 write bit(l), /* Can write object. */
4 read bit(l), /* Can read object. */

3 de le te_protect b i t (l) , / * Dele te-protected b i t . * /
3 nonowner, /* Nonowner protection bits. */

4 reserved bit(4),
4 delete bit(l), /* Can delete or truncate object. */
4 write bit(l), /* Can write object. */
4 read bit(l), /* Can read object. */

2 non_default_acl bit(l), /* True if not protected by
default ACL. */

2 reserved_l bit(15),
2 object_info, /* Information on object. */

3 long_rat_hdr bit(l), /* BOOT or DSKRAT file on non-
floppy disk. * /

3 dumped bit(l), /* True if file has been backed up. */
3 dos_mod bit(l), /* True if file modified under

PRIMOS II. */
3 special bit(l), /* True if special file in MFD. */
3 rwlock bit(2), /* Read/write lock. */
3 reserved bit(2),
3 type bit(8), /* Object type. */

2 dtm, /* Date/time last modified. */
3 date,

4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is day */

3 time fixed bin(15), /* Seconds since midnight divided
by four. */

2 reserved_2 fixed bin,
2 reserved_3 fixed bin,
2 truncated bit(l), /* True if truncated by FIX_DISK. */
2 reserved_4 bit(15),
2 dtbu, /* Date/time last backed-up. */

10-4 Third Edition

File Attributes

3 date,
4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is day */

3 time fixed bin(15), /* Seconds since midnight divided
by four. */

dtc, /* Date/t ime created. */
3 date,

4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is day */

3 time fixed bin(15), /* Seconds since midnight divided
by four. */

dta, /* Date/time accessed. */
3 date,

4 year bit(7), /* 1900 is year 0. */
4 month bit(4), /* January is month 1. */
4 day bit(5), /* The first day of the month is day */

3 time fixed bin(15); /* Seconds since midnight divided
by four. */

The following changes to dir_entry at Rev. 23.0 should be noted:
• Special bits are set for both the root and each mount point because a

reference to a mount point is directed to either an MFD (in the case of a
disk partition) or is directed to the root (in the case of a root portal).

• When reading the entries in the root directory, be aware that there is a
disparity between those entries and the attributes of the actual "grafted"
disk partition MFD. For more information, see the section Entries in the
Root Directory in Chapter 2 of this guide.

Example
Here is a sample PL/I subroutine that retrieves attributes for a file identified by a
pathname, and displays some of the attributes:

d i sp lay_a t t r i bu tes : p roc (name,code) ;
del name char (128) var, /* Pathname of file. */

code fixed bin(15); /* Standard error code. */

/* Other declarations omitted. */

Third Edition 10-5

Advanced Programmer's Guide II: File System

if index(name,'>')=0 & substr(name,1,1)A= '<'
then do; /* Not a pathname, just read current directory. */

cal l srch$$(k$read+k$getu, k$curr, 0,unit , type,code);
if codeA=0 then return;
filename=name;
end;

else do; /* A pathname, open parent directory. *//*

First, call subroutine to split pathname (name) into parent
directory name (pathname) and final objectname (filename). */

ca l l ge t_ j?arent_d i rec tory (name,pathname,fi lename) ;

/* Now, open parent directory for reading. */

ch rpos(1)=0 ;
chrpos(2)= length(pathname) ;
ca l l tsrc$$(k$read+k$getu, (pathname),uni t ,chrpos, type,

code);
if code/s=0 then return;
end; /* if index(name,'>')A=0 */

/* Now read the desired entry. */
c a l l e n t $ r d (u n i t , fi l e n a m e , a d d r (d i r _ e n t r y) , 3 1 , c o d e) ;
if codeA=0

then do; /* If error, close directory and return. */
c a l l c l o $ f u (u n i t , i) ;
r e t u r n ;

/* Now close the directory and return if error. */
c a l l c l o $ f u (u n i t , c o d e) ;
if codeA=0 then return;

/* Display some info on the file. */

s e l e c t (d i r _ e n t r y . o b j e c t _ i n f o . t y p e) ;
when('00 'b4) ca l l tnoua('SAM fi le ' ,8) ;
when('01 'b4) ca l l tnoua('DAM file ' ,8) ;
when('02'b4) cal l tnoua('SAM segdir ' ,10);
when('03'b4) cal l tnoua('DAM segdir ' ,10);
when('04'b4) cal l tnoua('DIRECTORY',3);
when('06 'b4) ca l l tnoua('ACAT' ,4) ;
when('07 'b4) ca l l tnoua('CAM file ' ,8) ;
otherwise cal l tnoua('Unrecognized type' ,17);
e n d ; / * s e l e c t (d i r _ e n t r y. o b j e c t _ i n f o . t y p e) * /

c a l l t n o u a (' ; ' , 2) ;

if non default acl then call tnoua('not default protected; ',23)

10-6 Third Edition

File Attributes

select(dir_entry.object_info.rwlock) ;
when('OO'b) call tnou('sys',3);
when('Ol'b) call tnou('EXCL',4);
when('lO'b) call tnou('UPDT', 4);
when('ll 'b) call tnou('NONE',4);
otherwise call tnou('????',4); /* Theoretically impossible
end; /* select(di r_entry.object_info.rwlock)

end; /* display_attributes: proc */

Setting File Attributes
You use the SATR$$ subroutine to set most file attributes. The SATR$$
subroutine can set attributes only on an object in the current directory. Therefore,
you may have to include calls to AT$ and AT$HOM to set a file attribute for an
arbitrary object. SATR$$ cannot work if the object is on a write-protected disk.
Usually, SATR$$ also updates the date/time last modified (and dateAime last
accessed, if possible) of the parent directory. Exceptions are setting the dump bit
and writing date/time last modified, dateAime backed up, and dateAime last
accessed.
When calling SATR$$, your program provides

• The name of the file whose attributes are to be changed
• The length of the name
• A key that specifies the file attribute to be changed
• The new value of the file attribute

The SATR$$ subroutine attempts to change the specified attribute to the new
value, and returns an error code indicating whether or not the operation was
successful. The caller must have protect rights on the object's parent directory in
order to write any of the attributes except the dumped bit. The error E$NRIT
indicates that the caller tried to set dta or dtc without belonging to the group,
.backups. The error E$ATNS indicates that the object is not an entry in a hashed
directory; the dtc and dta attributes are not supported.
Figure 10-3 illustrates the calling sequence of SATR$$. This section describes
the input and output parameters used when calling SATR$$, and then shows a
sample call to SATR$$.

Third Edition 10-7

Advanced Programmer's Guide II: File System

See Attribute of Object

Name of
Object

K$DMPB
K$DTA*
K$DTC*
K$DTIM
K$PROT
K$RWLK
K$SDL

New Value of
Chosen Attribute

Length of
Object Name
(characters)

HALF 32 ... HALF
INT STRING *^ TNT

DEPENDS
ON

KEY

SATR$$ (key, name, namejen, newjvalue, code)

HALF
INT

Standard
Code
Error

'For use only by .backups group.

Side Effects: Updates dtm and dta attributes or parent directory if key is not K$DMPB,
K$DTA, or K$DTIM.

Q10J03D100563LA

Figure 10-3. Calling Sequence of SATR$$

10-8 Third Edition

F/7e Attributes

Key: Your program passes a key argument that specifies the file attribute to be
changed. The values for key and their corresponding meanings can be one of

Keyword Value

KSDMPB

K$DTA 10

KSDTC 11

K$DTIM

KSPROT

KSRWLK

KSSDL

Meaning
Set the dumped bit to 1. The only way to reset the
dumped bit to 0 is by modifying the file or directory.
Set date/time last accessed

Set date/time created

Set date/time modified

Set password protection keys (described in
Subroutines Reference II: File System)

Set the read/write lock. Does not close file unit currently
open to the file. Any such file units remain open, and no
error indication is returned.

Set delete-protected switch.

Caution Do not use the dumped bit to implement an incremental backup program unless the
dumped bits are set only after the backup copy is verified to be readable.

New Value of the File Attribute: Your program supplies the new value of
the file attribute for all keys, except for K$DMPB which assumes a value of 1
(meaning Object dumped).
The formats of the new value for each key shown above are illustrated in Figure
10-4.

Third Edition 10-9

Advanced Programmer's Guide II: File System

K$DMPB N/A ignored

K$DTA STRUCT

3 4 7 8 9 10 11 12 13 14 15 16

year last accessed minus
1900

J I I I I L

month last accessed
(January is month 1)

I I I

date last accessed
(1-31)

J I I L
time last accessed (seconds since midnight divided by 4)

K$DTC STRUCT

3 4 6 7 8 9 10 11 12 13 14 15 16

year created minus
1900

_J I ' I

month created
(January is month 1)

I I l__

date created
d-31)

J I I L
time created (seconds since midnight divided by 4)

K$DTIM STRUCT

3 4 6 7 8 9 10 11 12 13 14 15 16

year last modified minus
1900

I I I I I L

month last modified
(January is month 1)

I I I

date last modified
(1-31)

J I I L
time last modified (seconds since midnight divided by 4)

K$PROT STRUCT

6 7 8 9 10 11 12 13 14 15 16

must be zero
i i i i

owner

HS2L*"18 read
1 1

must be zero
I i i i

non-
owner
delete/

„£' write read
1 "

K$RWLK HALF
INT

K$SDL
HALF 1 or LOGICAL
INT, BIT *2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

must be zero
1 I 1 1 1 1 1 1 ! 1 1 1 1

read/write
lock

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 means not delete-protected; non-zero means delete-protected

1 I I 1 1 1 1 1 1 1 1 1 1 1 1
Q10MD100563LA

Figure 10-4. Formats of SATR$$ Attributes for Each Key

10-10 Third Edition

File Attributes

Note Prior to Rev. 19.4, the second halfword of the new attribute value field had to be 0 when
key was K$PROT. This second halfword was thereby reserved for future use. As of Rev.
19.4, no second halfword is required, as future modifications are no longer planned for
the KSPROT key.

Four mnemonic keys are provided for use with the K$RWLK key of SATR$$:

K e y M e a n i n g
K$DFLT Default (system-wide) read/write lock. Depends on RWLOCK

directive setting in system configuration file.

K$EXCL Exclusive. The file or segment directory may be open to several
readers or to one writer, but not to both a reader and a writer, at
the same time.

K$UPDT Update. The file or segment directory may be open to several
readers and one writer at the same time.

K$NONE None. The file may be open to several readers and writers at the
same time.

An output argument, code, informs your program of the success or failure of the
operation. If code is 0, the operation was entirely successful. Otherwise, code is
always positive. After a call to SATR$$ to set a file system attribute, contains a
comprehensive list of all standard file system error codes. Error codes specific to
this operation are

Keyword Value

E$ATNS 238

ESBPAR

ESNRIT 10

Meaning

Specified attribute is not supported in the directory. The
target object does not have dta or dtc fields because it is
not an entry in a hashed directory.

Bad parameter. The length of the objectname as passed
by the calling program is less than 1 or greater than 32.
Insufficient access rights. The user must have Protect
access to the parent directory of the object whose file
attributes are being changed for keys other than K$SDL;
for KSSDL, the user must have Delete access to the par
ent directory.

ESNRIT may also indicate that the user tried to set dta or
dtc without being a member of the group, .backup$.

Third Edition 10-11

Advanced Programmer's Guide II: File System

Keyword
E$DERE

E$IACL

Value

14

15

Meaning

Operation illegal on a directory. An attempt has been
made to set the read/write lock for a file directory. File
directories do not have read/write locks.

Entry is an access category. An attempt has been made to set a file
attribute other than the date/time last modified for an access category.
See Chapter 9, Access Control Lists (ACLS), for information on ac
cess categories.

Example: The following FORTRAN statement changes the read/write lock of
the file MY_DATAB ASE to UPDT (2):

CALL SATR$$(K$RWLK,'MY_DATABASE',11,K$UPDT,CODE)

10-12 Third Edition

Disk Quotas

11

This chapter describes

• Retrieving information on disk space in use by a directory
• Improving quota system performance

Retrieving Information on Disk Space in Use
The Q$READ subroutine is useful for finding out how much disk space is used
in a given directory. It reports both the amount of space in use by the directory
itself (including files and segment directories within that directory) and the total
amount of space in use by the directory and all of its subdirectories. It also
reports the maximum quota placed on that directory, but does not report
information on quotas placed on parent directories of that directory, even though
such quotas may restrict activity within the directory.
You can use Q$READ to retrieve quota information on any directory residing on
a Rev. 19.0 (or later) disk except for the MFD (Master File Directory), which
requires the AVAIL command to determine how much disk space is being used.

Retrieving Quota Information for a Directory
To retrieve quota information for a specific directory, simply call Q$READ with
the pathname of the directory. To retrieve quota information on the current
directory, specify a null pathname.
An important piece of information returned is the quota/non-quota directory
field. If the directory is not a quota directory, then the date/time last updated
information for the directory is not maintained. Instead, this information is set to
0 by Q$READ.
Figure 11-1 illustrates the calling sequence of Q$READ. Figure 11-2 illustrates
the returned array of directory quota information (quota info).

Third Edition 11-1

Advanced Programmer's Guide II: File System

Read Quota Information on File Directory

Pathname of
Target Directory

Length of
quotajnfo
(fullwords)

<= = 128
STRING

HALF
INT

Q$READ (name, quotajnfo, max_entries, type, code)

FULL
INT

ARRAY(6)
HALF HALF
T N T I N T

Quota Information
on Directory

Standard
Error
Code

0: Quota Directory
1: Non-quota Directory

Side Effects: May reset cache attach point. QUJ01£>100563LA

Figure 11-1. Calling Sequence for Q$READ

11-2 Third Edition

Disk Quotas

Array
Element

(6

6

Halfword
Offset

oct dec
0 0

4 4

6 6

10 8

12 10)

12 10

13 11

Size of Disk Record in Halfwords
(1024 for SMDs, CMDs, FMDs; 440 for Floppies)

Number of Records Used by Directory

Maximum Number of Records (Quota)
0 for Non-quota Directory

Total Number of Records Used by Directory
(# Records Used + Total # Records Used forAll Subordinate Directories)

Reserved

Date/Time Last Updated (0 if Non-quota) in Format:

year minus 1900
_ I I I I L

mo(1 = January)
_ _ J I I

date (1-31)
J I I

seconds since midnight divided by 4

QUj02X)100563Ul

Figure 11-2. Structure of Directory Quota Information

Retrieving Quota Information for the MFD
To retrieve quota information for the MFD, your program must accumulate quota
information for all top-level directories in the MFD and analyze the information.
Useful information might include

Third Edition 11-3

Advanced Programmer's Guide II: File System

•

•

The total number of records in use. (Remember to count files and segment
directories in the MFD itself, as they are not accounted for in any top-level
directory by Q$READ.)
Whether the partition is open (has at least one top-level directory with no
quota restriction) or closed (all top-level directories have quotas placed on
them).
If the partition is closed, the total of all top-level directory quotas (the total
quota for the partition).
If the partition is closed, whether it is overcommitted (total quota greater
than the partition size) or undercommitted (total quota less than the
partition size), and by how many records.

Improving Quota System Performance
If your system does not use disk quotas, an attempt to read quota information for
a directory may take some time, as the quota system must size all files and
directories within a directory to produce the directory-used and total-used
values.
To speed this up, set a very large maximum quota on all top-level directories on
all disk partitions on your system. A maximum quota of 1000000 (one million)
records suffices. This forces PRIMOS to maintain up-to-the-minute quota
information on all directories on your system. As a result, using Q$READ (or
the LIST_QUOTA command) potentially takes much less time. However, minor
overhead cost is incurred when this is done.
You can write a program that does this using the Q$SET subroutine, although the
user who runs the program must have Protect access to the MFD of the disk
partition on which the program is being run. Your program would set high
quotas on all directories that do not already have quotas.
Bear in mind that a quota cannot be set on a non-quota directory that is in use by
any user. This includes situations where a user is attached to a subdirectory of
the non-quota directory. Therefore, it is best to run such programs immediately
after system coldstart, or just before the system is shut down (but after all users
are logged out).

11-4 Third Edition

12

General Concepts

Interprocess Communication via
the File System

The PRIMOS file system may be used to communicate between processes. For
example, an electronic mail subsystem can use a directory as the mail database,
and use specific files within the directory to communicate between different
processes of the subsystem.
This chapter describes the general concepts involved when using the file system
for interprocess communication. Some specific direction is then given for
solving typical interprocess communication problems using the file system.

For applications that require multiple processes to run simultaneously, you need
some form of interprocess communication. If your application does not require
high transaction processing rates, such as more than one transaction per second,
you might find that relying upon the PRIMOS file system for all of your
interprocess communication saves you development and maintenance cost.
If your application requires more than one transaction per second, you can still
use the file system for primary storage, but the interprocess communication
mechanism might be more efficiently handled by a combination of shared data
and semaphores, at the expense of increased development and maintenance cost.
See the Subroutines Reference series for further information.

File and System Read/Write Locks
For all files in your database, you must determine the appropriate per-file
read/write locks. All files are created with a read/write lock of SYS, meaning
use the system-wide read/write lock. The system-wide read/write lock is set by
the RWLOCK configuration directive during system cold start. See the System
Administrator's Guide I: System Configuration for further information on the
RWLOCK directive.
Typically, the system-wide read/write lock is 1, corresponding to a per-file
read/write lock of EXCL (multiple readers or 1 writer). This is typically the
most appropriate setting for database files. However, you should consider the
effects on your application should the system-wide read/write lock be 3,

Third Edition 12-1

Advanced Programmer's Guide II: File System

corresponding to a per-file read/write lock of UPDT (multiple readers and 1
writer), or should it be 0, meaning 1 reader or 1 writer.
If your application does not operate correctly with a non-standard system-wide
read/write lock, then you should take one of the following actions:

• Document the restriction and have your application perform a safety check
the first time it is started up after each system cold start.

• Avoid the restriction by placing per-file read/write locks on all files in your
database.

Documenting the Restriction and Performing a Safety Check: To
document the restriction your application places on the system-wide read/write
lock, include a sentence in the System Requirements portion of your
documentation that reads as follows:

This product requires the system-wide read/write lock to be set to 1 for proper
operation.

The system-wide read/write lock is controlled by the RWLOCK configuration
directive in your system configuration file (usually named CONFIG). If the
RWLOCK directive is not present, or has an argument of 1, the requirement is
satisfied. However, if it has an argument of 0 or 3, this product will not operate
properly.
In addition, it is wise to have your product perform a safety check to make sure
the system-wide read/write lock is set to the correct value. This safety check can
be performed in CPL, using the following CPL program. This program returns
the system-wide read/write lock as its function value.

&i f [exists t$temp_file. t] Sthen delete t$temp_file. t -no_query
Sseverity Serror Signore
open t$temp_file.t 1 40002 /* Open for write, creating it too.
&s sev := %severity$%
&if %sev% A= 0 &then Sresult UNKNOWN

&else &do
open t$temp_file.t 1 40001 /* Open it again for read.
&s sev := %severity$%
&if %sev% = 0 Sthen &result 3 /* UPDT lock.

&else &do /* Could be EXCL (1) or SNGL (0) .
c lose t$temp_file. t / * Close the fi le,
open t$temp_file.t 1 40001 /* Open for read.
&s sev := %severity$%
&if %sev% A= 0 &then Sresult UNKNOWN

Seise Sdo
open t$temp_file.t 1 40001 /*Again.

Sif %sev% = 0 Sthen Sresult 1
Seise Sresult 0

Send

12-2 Third Edition

Interprocess Communication via the File System

Send
Send

c l o s e t $ t e m p _ fi l e . t
d e l e t e t $ t e m p _ fi l e . t
S re tu rn

If the above CPL program is entitled RWLOCK.CPL, then the following
sequence of CPL statements verifies that the system-wide read/write lock is 1 or
displays an error message:

Sif [r rwlock] A= 1 Sthen Sdo
type System-wide read/write lock <RWLOCK> not set to 1. XYZ
type product cannot operate under these conditions. Please
type delete the RWLOCK directive from the system configuration
type file, then start up the XYZ application again using the
type START_XYZ command. For more information, see the XYZ
type Guide, and the PRIMOS System Administrator's Guide.
Sdata message /* Message to supervisor terminal.

XYZ product shutting down: unsupported RWLOCK configuration.
Send

Sreturn 1 Smessage RWLOCK not set to 1
Send

Placing a Per-file Read/Write Lock on Each File: A method of
insulating your product from the system-wide read/write lock value is to have
your application place a per-file read/write lock on each file it uses. This means
that each time your application creates a file, your application must call the
S ATR$$ subroutine to set the read/write lock of the file to the appropriate value.
(See Chapter 10, File Attributes, for information on calling SATR$$.)
With this method, two problems exist:

• To set the read/write lock of a file, the user running your application must
have Protect access to the parent directory of the file.

• Although creating a new file implies that the file is open for writing, your
application must close the file and then reopen the file after setting the
read/write lock for it, so that the new read/write lock setting may take
immediate effect. If your application does not perform these steps in the
order indicated, a window of time may still exist during which one process
may open a file for reading while another process has it open for writing.

Caveats on Using the File System for Interprocess
Communication
Under no circumstances should your application depend on the timing
characteristics of the PRIMOS file system or of any other part of PRIMOS. If
such a dependency is built in, then your application may be traumatized when

Third Edition 12-3

Advanced Programmer's Guide ll: File System

run on different models of Prime computers or on different revisions of.
PRIMOS. Additionally, the timing characteristics of the file system may vary
with the system load at any given moment.
It is assumed that a database used for interprocess communication between
processes in a given subsystem is accessed only by processes belonging to (or
operating under the auspices of) that subsystem. PRIMOS makes no direct
attempt to distinguish processes relating to a subsystem from other processes. If
the database is accessed by a process that is outside the domain of the subsystem,
the following may result:

• The contents of the database may be rendered invalid.
• Processes within the domain of the subsystem may encounter file system

errors, such as E$FIUS (File in use).
• Portions of the database that are protected only by the subsystem itself, not

by the PRIMOS ACL mechanism, may be read or written by any users
when outside the domain of the subsystem.

In summary, from the point of view of a subsystem database, all processes fall
into two categories:

• Cooperating processes
• Noncooperating processes

If cooperative processes can be identified by user ID or group name, then the
database can be protected by the PRIMOS ACL mechanism against unauthorized
access.
However, certain applications require the ability for any process to become a
cooperating process when running a program that is part of the subsystem. For
example, an electronic mail system might require that all users be able to send
and receive mail using a command such as MAIL, and yet these same users must
not be allowed to access crucial portions of the database when not using the
MAIL command. If this is a requirement of your subsystem, you have two
choices:

• Accept the potential consequences described earlier in this section.
• Use a different interprocess communication mechanism, such as the

PRIMENET X.25 interface.

12-4 Third Edition

Interprocess Communication via the File System

Sample Models of Communication via File System
This section discusses several sample subsystem models, all of which can be
implemented using the file system for interprocess communication. The models
discussed are

• Multiple processes creating file-based transactions
• Multiple competing servers accessing file-based transactions
• Two-process transaction management
• Multiple processes accessing a database

Multiple Processes Creating File-based Transactions
Certain applications, such as electronic mail subsystems, require the ability for
multiple processes to create new transactions, such as pieces of electronic mail,
to be processed by one or more server processes.
It is convenient for such a subsystem to store transactions in a lower-level
directory within the subsystem database, where each transaction is stored in its
own file.
There are two requirements:

•

•

While a transaction file is being created, it is incomplete and must not be
read by one of the server processes.
Once a transaction file is created, it must be overwritten or deleted by only
one of the server processes. A transaction file must not be reused for
another transaction until the original transaction has been serviced.

Preventing Premature Servicing of a Transaction: To prevent a server
process from servicing a file-based transaction before the transaction has been
completely written, one of two approaches can be used:

• A central database file, containing information on all outstanding
transactions, can be used to indicate the status of each outstanding
transaction.

• A field within the transaction file can be used to indicate the status of the
transaction.

The status of a transaction is used to distinguish between a transaction being
written, waiting for servicing, and being serviced. In both of the above
situations, the process that creates a transaction would update the transaction
status after it finished writing the transaction.

Third Edition 12-5

Advanced Programmer's Guide II: File System

This ordering of events would prevent the transaction from being considered
complete if the process creating the transaction was aborted (such as by a
force-logout) before it finished writing the transaction. A server process might
be unable to open a transaction file if it is still in use by the process creating the
transaction file. This is true if the system-wide read/write lock (RWLOCK) is
set to 0 or 1. This inability to open a transaction file can be used by a server
process to recognize a transaction creation in progress.
Preventing Reuse of a Transaction File: To prevent inadvertent reuse of
a transaction file that has not yet been serviced, a unique name can be assigned
to each transaction file. When this method is used, Add and Use access to the
lower-level directory containing the transaction files is the only access required
for processes creating transaction files.
An obvious solution to the problem of preventing inadvertent reuse of a
transaction file is for a process to pick a filename using some algorithm and then
check for the previous existence of a file with that name. This approach has two
problems:

• It is possible for process A to create a file between the point in time that
process B tests for the existence of the file and the point in time that
process B subsequently uses the file. If this happens, both processes use
the same transaction file.

• If the algorithm used to pick a filename is limited to a sufficiently small set
of possible filenames, a process could spend an unreasonable amount of
time testing filenames representing existing files if enough transactions
were pending. This would reduce system performance at a time when
performance needs to be at its best to process the pending transactions.

Multiple Competing Servers Accessing File-based
Transactions
When files in a directory represent transactions, or units of work, it is often
desirable for one of several transaction server processes to read a transaction file,
perform the transaction described within, and delete the transaction file. The
sequence of events is

1. A server process, S, is directed to process a transaction represented by (and
described within) a file, F.

2. Server process S opens file F.
3. Server process S reads the contents of file F and performs the

corresponding transaction.
4. Having performed the transaction, server process S now closes file F.
5. Server process S deletes file F to signal the completion of the transaction to

other server processes within the subsystem.

12-6 Third Edition

Interprocess Communication via the File System

This sequence of events may not result in a sufficiently robust interprocess
communication mechanism. The sequence shown above implies one crucial
assumption involving interprocess communication:

Once Step 1 is in progress, no other server process attempts to perform the
transaction described in file F.

If transactions are being assigned to server processes by a central process, this
assumption can be satisfied by having the central process refuse to assign file F
to another server process unless server process S is unable to complete the
transaction.
If there is no central process, then, in Step 1, server process S must choose
transaction file F for itself, based on some search algorithm. The following
methods of preventing other competing server processes from making the same
choice are in common use and are discussed below.

1. A central database file is used to maintain information on the outstanding
transactions. In this case, each transaction is represented by a record
within the central database file, and records for transactions being serviced
also identify the server process servicing the transaction.

2. The beginning of each transaction file contains a field that describes
whether and by which process the transaction is being serviced.

3. The transaction file is kept open while the transaction is being serviced,
preventing other server processes from opening the same transaction file.

Method 1 —Central Database: Using a central database file to maintain
information on transaction status has advantages and disadvantages. The
primary advantage is that status on all transactions can be retrieved by reading
only one file. Disadvantages are

• Access to the central file must be single-threaded, possibly reducing
overall throughput.

• Additional overhead is incurred whenever a transaction is serviced, as its
entry in the central file must be updated or deleted to reflect this fact.

• A premature server abort may cause the transaction status to be left in the
"being serviced" state too long.

Method 2 — Transaction File Status Field: Maintaining a status field at
the beginning of each transaction file has several advantages:

• Status is easily updated by the server process servicing the transaction
represented by the file, simply by rewriting the transaction status field at
the beginning of the file.

Third Edition 12-7

Advanced Programmer's Guide II: File System

• When the transaction is completed, the status need not be updated if the
transaction file is deleted.

However, this method has the following disadvantages:

• The status of all transactions must be obtained by examining each
transaction file.

• A premature server abort may cause the transaction status to be left in the
"being serviced" state too long.

Method 3 — Transaction File Kept Open: The status of a transaction can
be inferred by the state of the transaction file. If it is in use, that is, open for
reading and writing, then it is either being created or being serviced. This
approach has its advantages:

• If the server process is aborted, then the act of its logging out closes the
transaction file. This effectively implies a change to a "waiting for
service" status, allowing other server processes to open and service the file.

• The status of the file is automatically updated when the server process
opens the file. No separate operation need be performed to update the
status.

This method also has its disadvantages:

• To determine the status of all transactions, each transaction file must be
tested to see if it is in use.

• Constraints on the effective read/write lock of transaction files exist.
Multiple writers must never be allowed to open the file, and if the file is
open for writing, no other processes should be able to open it for reading.
This implies that the per-file read/write lock must be either EXCL or must
be SYS. If it is SYS, then the system-wide read/write lock (RWLOCK)
must be 0 or 1.
o Between Steps 4 and 5 above, that is, after closing a completed

transaction file and deleting it, another server process may find that it
is not in use and open the file. To prevent this, the file access can be
set so that it does not include Read or Write access for server
processes. (Use an existing category ACL, with a name like
TO_BE_DELETED. ACAT, for best results.)

o After the access is changed, then Step 4 can be performed followed by
Step 5. Any attempt by another server process to open the transaction
file between Steps 4 and 5 results in an insufficient access rights error.

12-8 Third Edition

Interprocess Communication via the File System

Two-process Transaction Management
A subsystem that consists of two processes usually conforms to one of two
models:

• One process creates transaction files, the other process services and deletes
them.

• Both processes create and service transaction files.

The first model might be a distributed transaction processing service. One
process receives transactions from other nodes on a network and deposits these
transactions in the database. The other process reads these transactions, services
them, and then deletes the transaction files.
The second model might be an electronic mail gateway service. Here, one
process services the electronic mail traffic for the local network, while the other
process services the incoming and outgoing electronic mail traffic for other
networks (such as a Public Data Network, or PDN).
The second model can be considered a bidirectional version of the first model.
To implement one direction of transaction communication, dedicate a
subdirectory of your database to this single direction. The process that creates
transactions can use the UID$BT and UID$CH subroutines to determine unique
filenames, and then writes files with these names in the lower-level directory.
The process that services the transactions can use the DIR$RD subroutine to
continually scan the lower-level directory for new transaction file arrivals.
When using this approach, the file creation process is the only process creating
files in the lower-level directory, and the file servicing process is the only
process servicing files in the lower-level directory. There is only one concern
over read/write locks in this case: while a transaction file is being written by the
transaction file creation process, the transaction file servicing process must not
attempt to service the transaction. This implies that the system-wide read/write
lock is set to 0 or 1, or that the per-file read/write lock is set to EXCL (using the
open/set-lock/close/open sequence described earlier).
One way to avoid the read/write lock concern entirely is to use the per-file
dumped bit to signal the readiness of a transaction file. When a file is created,
the dumped bit is reset. After the process finishes creating the file, it can use
SATR$$ to set the dumped bit. Meanwhile, the other process is using DIR$RD
to scan for new transaction files. Because DIR$RD also returns the dumped bit
for a file, it can avoid opening a file that has the dumped bit reset.

Multiple Processes Accessing a Database
For concurrent access to a database, Prime offers the MIDASPLUS system. If
you do not need the full potential of MIDASPLUS, you can design your own

Third Edition 12-9

Advanced Programmer's Guide ll: File System

database system that uses only the PRIMOS file system for concurrency
management.
This is particularly appropriate if your subsystem uses a small number of central
database files to manage a larger number of transaction files. This possibility has
been discussed earlier in this chapter. If this is the case, you must ensure that
two processes do not attempt to update a central file simultaneously, and that one
process does not attempt to read a central file while it is being written.
This implies that the system-wide read/write lock is restricted to 1, or that all
central files in the database have their read/write locks set to EXCL (multiple
readers or 1 writer).
Performing record locking within a file is not an alternative, since there is no
reliable method of updating a field within the file from one value to another
while preventing another process from updating the same field. Moreover, such
an occurrence cannot be detected by either process.
For example, if process P wishes to lock a record within the file, it might read a
field in the file that indicates the record is not in use. It would then update this
field to indicate that it is using the record. In the meantime, however, process Q
could perform the same sequence of operations, and both processes would then
operate as if they had locked the record, although the field would record only
one process as owning the record lock.
Therefore, it is recommended that central database files all have effective
read/write locks of EXCL. If, for example, you need one central database file to
manage pending transactions in your database, and you believe that
single-threading access to the central database file will result in insufficient
throughput, you might consider using several central database files. Here, the
appropriate central database file would be selected using a hash function on the
transaction key. This approach might increase throughput.

12-10 Third Edition

Appendix

r

r
r

File System Glossary

This appendix contains a glossary of terms that refer to concepts and objects
peculiar to operating systems/file systems in general, and the PRIMOS file
system in particular. Terms that are italicized in these definitions are defined
elsewhere in the glossary.

common file system name space
The object name space in the PRIMOS file system, specifically the set of
names that the Name Server manages. The boundaries of the common file
system name space are defined by a DSM config group.

data
Information that takes the form of letters, digits, symbols, and special
characters.

data record
A number of fields that can be combined into a structured element.

directory tree
A directory structure in which logically-related objects are stored in a
hierarchical fashion. Files reside within directories, which in turn may reside
within other directories. The layout of the tree can be thought of as
mimicking that of a physical file cabinet.

disk-directed portal
A file system object which redirects references to the MFD of a specified disk.
This type of portal is defined primarily for compatibility with earlier revisions
of PRIMOS which do not have a root directory.

disk partition
A logical disk unit; there may be one or more disk partitions on one physical
disk pack.

disk name
Each disk partition is named by a six-character identification string, which is
used as part of a pathname syntax form.

Third Edition A-1

Advanced Programmer's Guide II: File System

disk tree or naming tree
A directory tree structure that is restricted to one disk partition; the root of a
disk tree is the MFD.

DSM config group
A subset of a network in which a group of machines is administered by one
authority. A config group may not intersect with another config group.
DSM stands for Distributed Systems Management.

field
Information in the form of letters, digits, and symbols arranged into useful
groups of words and numbers. A field is usually designated as either
alphanumeric (consisting of a mixture of letters, digits, and symbols) or
numeric (consisting mostly of digits, but possibly including a plus or a minus
sign, a decimal point, one or more commas, and perhaps a currency symbol).
Other kinds of fields, such as pure alphabetic or binary, are recognized by
some programming languages.

fully-qualified pathname
A pathname whose name is qualified by the root directory symbol (<).

logical mount
A partition that has been added using the -MOUNT_PATH option. The
logical mount is either a partition that is grafted to a directory at a point lower
in the tree hierarchy than the root, or a partition mounted in the root directory
with a name between 7 and 32 characters long.

mount point directory
Any directory in the tree hierarchy (except the MFD) over which a partition
has been grafted. The contents of the mount-point directory are inaccessible
until the grafted partition is shut down.

multi-rooted name space
A directory tree hierarchy in which the name of every object in is ultimately
defined by the name of its disk partition.

name or objectname
The name that references a particular file system object. The name must be
unique within the common file system name space, and must adhere to the
PRIMOS rules for length and permitted characters.

name space
The set of objectnames within the specified boundaries of a file system.

A-2 Third Edition

File System Glossary

naming sphere
The name given to the boundary of the common file system name space',
within the naming sphere, security and access controls are controlled by
CONHG_.NET and DSM.

Name Server
The PRIMOS server that controls the set of functions that manipulate the
common file system name space across a set of machines previously defined
by DSM.

network
A collection of machines that have an embedded communication path among
themselves. There may be one or more common file system name spaces
within a given network.

partition ID
ID for a disk partition that allows the Name Server to distinguish multiple disk
partitions with the same disk name.

pathname
A sequence of nodes that refers to a specific traversal path in a directory tree,
where intermediate nodes in a path are usually directories.

portal
A file system object that provides a naming gateway to another common file
system name space. A portal makes it possible to have transparent references
to file system objects that are outside of the local common file system name
space. The two types of portals are root-directed and disk-directed.

private partition
A disk partition that is not automatically available to the common file system
name space. The private partition is visible to users on the local system,
dependent upon ACLs.

record
A collection of fields; it is the basic unit upon which most file systems
operate.

root or root directory
The topmost directory of the directory tree. The root directory has special
characteristics, and contains directory entries of every disk partition in the
common file system name space except a logical mount.

Third Edition A-3

Advanced Programmer's Guide II: File System

root-directed portal
A file system object which redirects references to the root directory of another
machine. The remote machine can be any machine outside your file system
name space as long as it resides on the network.

ngly-rooted name space
A file system hierarchy in which the name of every object in is ultimately
df.finprt hv the. root directory.

text record
An unstructured record that consists of strings of alphanumeric information of
varying lengths.

A-4 Third Edition

Index

Index

Symbols
$, 5-10
/* (comment indicator), 5-10

A access right, definition, 4-5
ACSCAT subroutine

calling sequence, 9-5
introduction, 9-2

ACSCHG subroutine
calling sequence, 9-7
using, 9-6

ACSDFT subroutine
calling sequence, 9-3
introduction, 9-1

ACSLIK subroutine
calling sequence, 9-8
using, 9-6

ACSLST subroutine
calling sequence, 9-9
using, 9-8, 9-10

ACSSET subroutine
calling sequence, 9-4
introduction, 9-2
using, 9-6

ACATs. See Access categories
Access categories (ACATs)

creating, 4—19
creating with ACSSET, 9-2
definition, 2-16

Access control, discussion, 3-6
Access Control Lists. See ACLs
Access methods

file system, 2-10
files, 3-5

Access rights
attaching to directories, 3-11

calculating when opening files, 3-11
category access, 4-18
changing, 4—20
deleting, 4-21
setting default, 4—16
setting identical, 4-18
specific, 4—17

ACLs
access categories, 2-16
calculating, 3-9
changing, 4-20, 9-6
creating identical, 4-18
default, 4-6
definition, 2-10
deleting, 4-21
description, 4-5 to 4-6
discussion, 9-10
functions, 4-15
parsing with programs, 9-10
programmer access, 3-7
reading, 9-8
root directory, 2-12
setting category access, 9-2
setting default access, 9-1
setting identical, 9-6
setting specific access, 9-2
subroutine manipulation, 9-1

-added_disks keyword, 5-15, 5-16
Administrator search rules, 5-3
ALL access right, definition, 4-6
Arguments, introduction, 4-3
ATS subroutine, 6-7 to 6-8

calling sequence, 6-9
ATS-type subroutines, list, 6-4
ATSABS subroutine, 6-10

calling sequence, 6-11
ATSANY subroutine, 6-13

calling sequence, 6-14

ATSHOM subroutine
calling sequence, 6-3
discussion, 6-3

ATSOR subroutine
calling sequence, 6-2
discussion, 6-1 to 6-2

ATSREL subroutine, 6-16
calling sequence, 6-17

ATSROOT subroutine, 6-19
calling sequence, 6-19

Attach points
changing, 4-12
current, 3-7, 4-5, 6-4
discussion, 6-25
home, 6-3
initial, 4-4, 6-1
introduction, 4—4
manipulating, 6-7
resetting current, 6-5

ATTACHS, discussion, 5-5
ATTACHS search list

discussion, 5-6, 5-7
introduction, 5-2
unqualified pathnames, 3-4
using added_disks keyword, 5-15
using with other search lists, 5-21

Attaching
access rights, 3-11
directory, 3-6
discussion, 4—12
subroutine, 4-14

Attributes
DTA, 3-21
DTB, 3-24
DTC, 3-22
DTM, 3-23
dumped/not-dumped, 3-26
file system objects, 10-1

Third Edition X-1

Advanced Programmer's Guide II: File System

Attributes (Continued)
file type, 3-25
general discussion, 4-7
object, 3-20
read/write locks, 3-24 to 3-25
setting file, 10-7
special/not-special, 3-27

B
Badspot file, definition, 2-14
.BIN files. See Binary files
Binary files, 5-8
BINARYS search list

discussion, 5-8
introduction, 5-2

Blocking factor
definition, 7-42
determining, 7-43

Bootstrap file, definition, 2-13

CALACS subroutine, 9-10
CAM files, 3-5
Category access rights

creating, 4-19 to 4-20
setting, 4—18

Changing ACLs, 9-6
CLOSFN subroutine, calling sequence,

7-22
CLOSFU subroutine, calling sequence,

7-20
Closing

files, 3-19,7-19
objects, 4-37
text files, 7-5

Command functions, introduction, 4-2
Command Procedure Language. See CPL
COMMANDS search list

discussion, 5-7
introduction, 5-2

Commands, 4-1
Comment indicator. See I*
Common file system name space

characteristics, 2-4, 2-7
definition, A-1

Compressed files, 7-3
Config groups, definition, A-2

CPL
checking system read/write locks, 12-2
introduction, 4—2

Creating
directories, 8-28
file directories, 4-24
files, 4-26
objects, 4-10
portals, 4-22
search rules, 5-9 to 5-10

Current attach point
definition, 3-7
discussion, 4-5, 6-4
resetting, 6-5

Current directory, opening, 6-23
Current object position, discussion, 3-13

D access right, definition, 4-5
DAM files, 3-5
Data, definition, 1-1, A-1
Data files

discussion, 8—41
numbered, 2-15
reading and writing, 8—40

Data records, definition, 1-1, A-1
Date and Time Created attribute. See DTC

attribute
Date and Time Last Accessed attribute.

See DTA
Date and Time Last Backed Up attribute.

See DTB attribute
Date and Time Last Modified attribute.

See DTM attribute
Default access rights, 4-16
Default search lists, introduction, 5-2
Deleting

ACLs, 4-21
member files, 8-21
objects, 4-11,4-38

DIRSCR subroutine
calling sequence, 8-30
using, 8-28

DIRSRD subroutine
calling sequence, 8-38
directory entry returned, 10-3
introduction, 8-28
using, 8-37

dir_entry declaration
example, 10-4, 10-5
Rev. 23.0 changes, 10-5

Directories
access calculation when attaching, 3-11
attaching, 6-13, 6-16
attaching to file, 3-6
attaching via subroutines, 4-14
creating, 4—24, 8-28
current, 3-7
defined, 1-2
dumped bit, 3-26
home, 3-3
lower-level, 2-15
manipulating, 8-28
mount-point, 2-8
opening, 4—27, 8-32
origin, 2-15
password, 3-8
reading, 4-31
root, 2-5
scanning, 8-37
segment, 2-15, 8-2
setting ACLs, 9-1
writing, 4-35

Directory trees, definition, A-1
Disk partitions, definition, 2-14, A-1
Disk quotas, introduction, 11-1
Disk Record Availability Table

(DSKRAT), 2-13
Disk trees, definition, A-2
Disk-directed portals, definition, 2-9,

A-1
Disk-shut-down flag, 3-15
Disknames, definition, A-1
Disks

physical, 2-13
space inuse, 11-1

Distributed System Management (DSM),
Name Server usage, 2-7

DSM. See Distributed System
Management

DSM config group, definition, A-2
DTA attribute

characteristics, 3-21
format, 3-22

DTB attribute, definition, 3-24
DTC attribute, definition, 3-22
DTM attribute, definition, 3-23

X-2 Third Edition

Index

Dumped bit, 3-26
Dynamic allocation, definition, 3-17

ENTSRD subroutine
calling sequence, 10-2
directory entry returned, 10-3
introduction, 8-28
using, 10-1

ENTRYS search list
discussion, 5-9
introduction, 5-2

EPFs, 5-9
Error codes, object type, 3-14
ESR command. See

EXPAND_SEARCH_RULES (ESR)
command

Executable Program Format. See EPFs
EXPAND_SEARCH_RULES (ESR)

command, 5-5, 5-7, 5-8
CPL programs, 5-20
using, 5-19

Extending
segment directories, 8-13
text files, 7-5

Extents, 3-6

Fields, definition, 1-1, A-2
File attributes

discussion, 3-20,4-7
setting, 10-7

File pointers, discussion, 3-18
File system

closing objects, 4-37
creating objects, 4-22
definition, 2-1
deleting objects, 4—38
glossary of terms, A-1
opening objects, 4-27
overview, 4—9
pre-Rev. 23.0, 2-2
primitives, 6-6
PRIMOS, 2-1
programmer interfaces, 4-1
reading objects, 4-30
Rev. 23.0,2-4

singly-rooted, 2-5
starting point, 2-10
writing, 4-35

File system name space, definition, 2-3
File system objects, discussion, 2-9
File types, attribute, 3-25
File units

characteristics, 3-13
definition, 3-13
discussion, 4-7
numbers, 3-17, 3-18
opening, 3-11
using RDLINS, 7-23
using WTLINS, 7-23

Files
access methods, 3-5
accessing with subroutines, 7-1
CAM, 3-6
closing, 3-19,7-19
compressed, 7-3
creating, 4-26
DAM, 3-5
defined, 1-2
definition, 2-16
fixed-length, 7-30
manipulating with PRWFSS, 7-30
maximum length, 7-5
open, 3-5
opening, 3-16,4-29,7-6
organizing, 8-1
positioning, 3-19
positioning to end-of-file, 7-13
read/write locks, 12-1, 12-3
reading, 4-33
SAM, 3-5
search rules, 5-1
setting ACLs, 9-1
text, 7-1, 7-45
transaction, 12-5
truncating, 3-19, 7-16
uncompressed, 7-3
variable-length record, 7-23
writing, 4-36

Find free entry function, introduction,
8-23

Find full entry function, introduction,
8-23

Fixed-length files
discussion, 7-30
format, 7-42

Fixed-length records
differing from variable length, 7-2
discussion, 7-3, 7-42
introduction, 7-1
using with variable length, 7-4

Rags, 3-15
Fully-qualified pathnames, 2-10

definition, A-2
determining, 6-20
discussion, 3-2

Functions
ACLs, 4-15
find free entry, 8-23
find full entry, 8-23

Global Mount Table (GMT)
discussion, 2-7,5-16
reading, 4—34

GMT. See Global Mount Table
GPATHS subroutine, 6-20

calling sequence, 6-21
preserving attach point, 6-26
returned pathnames, 6-22

H
Home attach point, discussion, 4-5, 6-3
Home directories, attaching, 4-13
[home_dir] keyword, 5-18

/
INCLUDES search list

discussion, 5-8
introduction, 5-2

Initial attach point
discussion, 6-1
introduction, 4—4
using the [origin_dirl keyword, 5-18

-insert keyword, 5-12
Interprocess communication

caveats, 12-3
introduction, 12-1
sample models, 12-5

Third Edition X-3

Advanced Programmer's Guide II: File System

K
Keywords

[home_dir], 5-18
[origin_dir], 5-18
[referencing_dir], 5-19
-added_disks, 5-15, 5-16
-insert, 5-12
-optional, 5-15
-primos_direct_entries, 5-17
-public, 5-17
-static_mode_libraries, 5-17
-system, 5-13
search rules, 5-12

L access right, definition, 4-5
LIST.SEARCH.RULES command, 5-11
Locks, read/write, 3-16, 3-24 to 3-25,

12-1,12-3
Logical mounts

definition, A-2
discussion, 2-8

Lower-level directories, definition, 2-15
LSR command. See

LIST SEARCH.RULES command

M
Master File Directory. See MFD
Member files

deleting within a SEGDIR, 8-21
opening within a SEGDIR, 8-16

MFDs
definition, 2-14
quota information, 11-3

Modes, open, 3-13
Mount-point directories, definition, 2-8,

A-2
Multi-rooted name space, definition, A-2
Multi-rooted tree hierarchies

discussion, 2-2
limitations, 2-4

Multiple processes
accessing, 12-10
file-based transactions, 12-5
managing, 12-9

Multiple servers, file-based transactions,
12-6

N
Name. See Objectname
Name Server

definition, A-3
discussion, 2-7
using -added.disks keyword, 5-16

Name space
definition, A-2
file system, 2-3
multi-rooted, A-2
singly-rooted, A-4

Naming sphere, definition, A-3
Networks, definition, A-3
NONE access right, definition, 4-6
Numbered data files, 2-15

O access right, definition, 4-5
Object types, 3-14
Object-modified flag, 3-15
Objectnames

character components, 3-2
conventions, 3-2
definition, A-2
discussion, 4-6

Objects
access control, 4—12
accessing, 3-9
calculated access, 3-15
changing ACLs, 9-6
closing, 4-37
creating, 4-22
definition, 1-2
deleting, 4-11,4-38
determining current position, 3-13
file system, 2-9
manipulating, 4—10 to 4—11
naming, 3-5
naming and accessing, 2-10
opening, 4-10,4-27
reading, 4-10,4-30
Reading file attributes, 10-1

writing, 4—11, 4-35
Open mode, valid operations, 3-13
Opening

current directory, 6-23
directories, 4-27, 8-32
files, 3-11,3-16,4-29
member files, 8-16
objects, 4-10
segment directories, 8-3
text files, 7-5

-optional keyword, 5-15
Origin directories

attaching, 4-12
definition, 2-15
using with [origin.dir] keyword, 5-1!

[origin.dir] keyword, 5-18

P access right, definition, 4—5
Parsing, ACLs with programs, 9-10
Partition IDs, definition, A-3
Partitions

See also Disk partitions
grafted, 2-8

Password directories, discussion, 3-8
Pathnames

definition, 3-1, A-3
discussion, 3-2
fully-qualified, 2-10, 3-2, A-2
relative, 3-3
simple, 3—4
unqualified, 3-4

Performance, improving with quotas,
11-4

Physical disks, discussion, 2-13
Physical records, discussion, 2-13
Portals

creating, 4-22
definition, 2-8, A-3
disk-directed, 2-9
removing, 4-40
root-directed, 2-9

Positioning, segment directories, 8-9
Positioning files, 3-19
Positioning to end-of-file, 7-13
PRIMENET, RFA access, 2-7

X-4 Third Edition

Index

Primitives, 6-6
introduction, 4-2

PRIMOS, return codes, 4-8
PRIMOS file system objects, discussion,

2-9
-primos_direct_entries keyword, 5-17
Private partitions, definition, A-3
Processes

multiple, 12-1,12-5
transaction management, 12-9

PRWFSS subroutine
calling sequence, 7-15, 7-18,7-31,

7-32,7-33, 7-34
discussion, 7-30
introduction, 7-2
using, 7-38

-public keyword, 5-17

0
QSREAD subroutine

calling sequence, 11-2
discussion, 11-1
quota structure returned, 11-3

QSSET subroutine, using, 11-3
Quotas

directory, 3-27
disk, 11-1
improving system performance, 11-4
MFD, 11-3

R
R access right, definition, 4-6
Random-access operations, calculating

record position, 7^44
RDLINS subroutine

calling sequence, 7-25
discussion, 7-23
introduction, 7-2
sample routine, 7-27 to 7-29

Read/write locks
attributes, 3-24 to 3-25
discussion, 3-16
file, 12-1, 12-3
system, 12-1

Reading
directories, 4—31
files, 4-33

Global Mount Table, 4-34
objects, 4-10

Records
calculating position, 7—44
definition, 1-1, A-3
fixed-length, 7-1, 7-2,7-3,7-42
text, A-4
variable-length, 7-1, 7-2,7-3,7-41

[referencing_dir] keyword, 5-19
Registered EPFs, 5-17
Remote File Access, 2-7
Removing, portals, 4—40
Return codes, introduction, 4—8
Root directory

attaching, 6-19
characteristics, 2-12
defined, 2-5
definition, A-3
discussion, 2-10
entries, 2-12

Root entry, definition, 2-14
Root-directed portals, definition, 2-9,

A-4
RWLOCK directive, 12-1, 12-2

SAM files, 3-5
SATRSS subroutine

calling sequence, 10-8
formats, 10-10
using, 10-7,10-9, 10-11,10-12

Scanning
directories, 8-37
segment directories, 8-23

Search lists
accessing, 5-19
default, 5-2
introduction, 5-1
setting, 5-10
types, 5-4
user-defined, 5-2, 5-4
user-specified, 5-2

Search rule keywords. See Keywords
Search rules

administrator, 5-3
ATTACHS, 5-5
benefits, 5-2
BINARYS, 5-8

COMMANDS, 5-7
creating, 5-9 to 5-10
ENTRYS, 5-9
file, 5-1
INCLUDES, 5-8
introduction, 5-1
keywords, 5-12
system, 5-3
types, 5-3
user-specified, 5-4, 5-9
using subroutines, 5-20

Segment directories
accessing with subroutines, 8-2
definition, 2-15
deleting member files, 8-21
discussion, 8-2
dumped bit, 3-26
extending, 8-13
naming, 8-6
opening, 8-3
opening member files, 8-16
positioning, 8-9
scanning, 8-23
size, 8-15

SET_SEARCH_RULES command, 5-11,
5-13

Setting, search lists, 5-10
SGDSDL subroutine

calling sequence, 8-22
introduction, 8-2
using, 8-21

SGDSEX subroutine, introduction, 8-2
SGDSOP subroutine

calling sequence, 7-8, 8-17
introduction, 7-2, 8-2
using, 8-16

SGDRSS subroutine
calling sequence, 8-11, 8-14, 8-25
introduction, 8-2
using, 8-9, 8-13, 8-16, 8-23

Simple pathnames, discussion, 3-4
Singly-rooted file system

-added_disks keyword, 5-16
discussion, 2-5

Singly-rooted name space, definition,
A-4

Special/not-special attribute, 3-27
Specific access rights, 4-17
.SR suffix, 5-10

Third Edition X-5

Advanced Programmer's Guide II: File System

SRCHSS subroutine, 6-23
calling sequence, 6-24, 7-9, 8-5, 8-35
example, 4-3
introduction, 7-2, 8-28
using, 7-45, 8-3, 8-32

SRSFXS subroutine
calling sequence, 7-7, 8-4, 8-34
discussion, 8-41
introduction, 7-2, 8-2, 8-28
using, 7-45, 8-3, 8-32

SSR command. See
SET_SEARCH_RULES command

Static allocation, definition, 3-17
-static_mode_libraries keyword, 5-17
Subroutines

accessing files, 7-1
accessing segment directories, 8-2
ATS-type, 6-4
attaching, 6-7 to 6-8
introduction, 4-2
positioning segment directories, 8-9
return codes, 4-8
top-level directory attaching, 6-10
using search rules, 5-20

System, search rules, 5-3
-system keyword, 5-13
System read/write locks

checking with CPL, 12-2
setting, 12-1

Text files
discussion, 7-45
introduction, 7-1
manipulating, 7-5
variable-length, 7-23

Text records, definition, 1-1, A-4
Transaction files

creating, 12-5
multiple servers accessing, 12-6
preventing reuse, 12-6
status, 12-8

Tree hierarchy, multi-rooted, 2-2
Truncating, text files, 7-5
Truncating files, 3-19,7-16

U access right, definition, 4—6
Uncompressed files, 7-3
Unqualified pathnames, discussion, 3-4
User-defined search lists, 5-4
User-specified search rules, 5-4

Variable-length files, format, 7-41
Variable-length records

differing from fixed-length, 7-2
discussion, 7-3,7-41
introduction, 7-1
using with fixed-length, 7-4

Virtual memory file access. See VMFA
VMFA, definition, 3-14

w
W access right, definition, 4-6
Writing

directories, 4-35
files, 4-36
objects, 4-11

WTLINS subroutine
calling sequence, 7-26
discussion, 7-23
introduction, 7-2
sample routine, 7-27 to 7-29

X access right, definition, 4-6

X-6 Third Edition

Surveys

Reader Response Form
Advanced Programmer's Guide II: File System
DOC10056-3LA

Your feedback will help us continue to improve the quality, accuracy, and organization of our user publications.

1. How do you rate this document for overall usefulness?

I I excellent □ very good □ good □ fair □ poor

2. What features of this manual did you find most useful?

3. What faults or errors in this manual gave you problems?

4. How does this manual compare to equivalent manuals produced by other computer companies?

□ Much better □ Slightly better □ About the same
□ Much worse □ Slightly worse □ Cant judge

5. Which other companies' manuals have you read?

Name:
Position:_
Company:.
Address:_

.Postal Code:

First Class Permit #531 Natick, Massachusetts 01760

BUSINESS REPLY MAIL
Postage will be paid by:

Prime
Attention: Technical Publications
Bldg 10
Prime Park, Natick, Ma. 01760

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Front Cover
	Title Page
	i
	Copyright
	ii
	How To Order Technical Documents
	iii
	Reading Path for PRIMOS Documentation
	iv
	Contents
	v
	vi
	vii
	viii
	ix
	x
	About This Book
	xi
	xii
	References
	xiii
	Prime Documentation Conventions
	xiv
	Chapter 1
	What Is a File System
	1-1
	1-2
	1-3
	Chapter 2
	The PRIMOS File System
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	Chapter 3
	Accessing the PRIMOS File System
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	Chapter 4
	Programmer Interfaces to the File System
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	Chapter 5
	Search Rules
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	Chapter 6
	Attach Points
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	Chapter 7
	Text Storage and Retrieval
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	Chapter 8
	Data Storage and Retrieval
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	Chapter 9
	Access Control Lists (ACLs)
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	Chapter 10
	File Attributes
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	Chapter 11
	Disk Quotas
	11-1
	11-2
	11-3
	11-4
	Chapter 12
	Interprocess Communication via the File System
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	12-10
	Appendix
	Appendix A
	File System Glossary
	A-1
	A-2
	A-3
	A-4
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	Surveys
	
	

